Skip to main content
Log in

Interactions in a tritrophic acarine predator-prey metapopulation system V: Within-plant dynamics of Phytoseiulus persimilis and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae)

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

To investigate the relative contributions of bottom-up (plant condition) and top-down (predatory mites) factors on the dynamics of the two-spotted spider mite (Tetranychus urticae), a series of experiments were conducted in which spider mites and predatory mites were released on bean plants. Plants inoculated with 2, 4, 8, 16, and 32 adult female T. urticae were either left untreated or were inoculated with 3 or 5 adult female predators (Phytoseiulus persimilis) one week after the introduction of spider mites. Plant area, densities of T. urticae and P. persimilis, and plant injury were assessed by weekly sampling. Data were analysed by a combination of statistical methods and a tri-trophic mechanistic simulation model partly parameterised from the current experiments and partly from previous data. The results showed a clear effect of predators on the density of spider mites and on the plant injury they cause. Plant injury increased with the initial number of spider mites and decreased with the initial number of predators. Extinction of T. urticae, followed by extinction of P. persimilis, was the most likely outcome for most initial combinations of prey and predators. Eggs constituted a relatively smaller part of the prey population as plant injury increased and of the predator population as prey density decreased. We did not find statistical evidence of P. persimilis having preference for feeding on T. urticae eggs. The simulation model demonstrated that bottom-up and top-down factors interact synergistically to reduce the density of spider mites. This may have important implications for biological control of spider mites by means of predatory mites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bancroft J.S. and Margolies D.C. 1999. An individual-based model of an acarine tritrophic system: lima bean, Phaseolus lunatus L., twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae), and Phytoseiulus persimilis (Acari: Phytoseiidae). Ecol. Model. 123: 161–181.

    Google Scholar 

  • Begon M., Harper J.L. and Townsend C.R. 1996. Ecology. Individuals, populations and communities. Blackwell Science, Oxford, 1068 pp.

    Google Scholar 

  • Bernstein C. 1984. Prey and predator emigration responses in the acarine system Tetranychus urticae-Phytoseiulus persimilis. Oecologia 61: 134–142, (Berlin).

    Google Scholar 

  • Bernstein C. 1985. A simulation model for an acarine predator-prey system (Phytoseiulus persimilis-Tetranychus urticae). J. Anim. Ecol. 54: 375–389.

    Google Scholar 

  • Burnett T. 1979. An acarine predator-prey population infesting roses. Res. Popul. Ecol. 20: 227–234.

    Google Scholar 

  • Carey J.R. 1983. Practical application of the stable age distribution: Analysis of a tetranychid mite (Acari: Tetranychidae) population outbreak. Environ. Entomol. 12: 10–18.

    Google Scholar 

  • Easterbrook M.A. 1992. The possibilities for control of two-spotted spider mite Tetranychus urticae on field-grown strawberries in the UK by predatory mites. Biocontrol Science and Technology 2: 235–245.

    Google Scholar 

  • Eveleigh E.S. and Chant D.A. 1982a. Experimental studies on acarine predator-prey interactions: the effects of predator density on prey consumption, predator searching efficiency, and the functional response to prey density (Acarina: Phytoseiidae). Can. J. Zool. 60: 611–629.

    Google Scholar 

  • Eveleigh E.S. and Chant D.A. 1982b. Experimental studies on acarine predator-prey interactions: the response to prey distribution in a homogeneous area (Acarina: Phytoseiidae). Can. J. Zool. 60: 639–647.

    Google Scholar 

  • Eveleigh E.S. and Chant D.A. 1982c. Experimental studies on acarine predator-prey interactions: the distribution of search effort and the functional and numerical responses of predators in a patchy environment (Acarina: Phytoseiidae). Can. J. Zool. 60: 2979–2991.

    Google Scholar 

  • Eveleigh E.S. and Chant D.A. 1982d. Experimental studies on acarine predator-prey interactions: distribution of search effort and predation rates of a predator population in a patchy environment (Acarina: Phytoseiidae). Can. J. Zool. 60: 3001–3009.

    Google Scholar 

  • Everson O. 1979. The functional response of Phytoseiulus persimilis (Acarina: Phytoseiidae) to various densities of Tetranychus urticae (Acarina: Tetranychidae). Can. Entomol. 111: 7–10.

    Google Scholar 

  • Fernando M.H.J.P. and Hassell M.P. 1980. Predator-prey responses in an acarine system. Res. Popul. Ecol. 27: 301–322.

    Google Scholar 

  • Force D.C. 1967. Effect of temperature on biological control of two-spotted spider mites by Phytoseiulus persimilis. J. Econ. Entomol. 60: 1308–1311.

    Google Scholar 

  • French N., Parr W.J., Gould H.J., Williams J.J. and Simmonds S.P. 1976. Development of biological methods for the control of Tetranychus urticae on tomatoes using Phytoseiulus persimilis. Ann. appl. Biol. 83: 177–189.

    Google Scholar 

  • Gerson U. 1979. Silk production in Tetranychus (Acari: Tetranychidae). In: Rodriguez J.G. (ed.), Recent Advances in Acarology. Vol. I. Academic Press, New York, pp. 177–188.

    Google Scholar 

  • Gough N. 1991. Long-term stability in the interaction between Tetranychus urticae and Phytoseiulus persimilis producing successful integrated control on roses in southeast Queensland. Exp. Appl. Acarol. 12: 83–101.

    Google Scholar 

  • Gould H.J. 1970. Preliminary studies on an integrated control programme for cucumber pests and an evaluation of methods of introducing Phytoseiulus persimilis Athias-Henriot for the control of Tetranychus urticae. Koch. Ann. Appl. Biol. 66: 505–513.

    Google Scholar 

  • Hartvigsen G., Wait D.A. and Coleman J.S. 1995. Tri-trophic interactions influenced by resource availability: predator effects on plant performance depend on plant resources. Oikos 74: 463–468.

    Google Scholar 

  • Harrison S. and Taylor A.D. 1997. Empirical evidence for metapopulation dynamics. In: Hanski I. and Gilpin M.E. (eds), Metapopulation Biology, Ecology, Genetics, and Evolution. Academic Press, San Diego, pp. 27–42.

    Google Scholar 

  • Helle W. and Sabelis M.W. 1985. Spider Mites, Their Biology, Natural Enemies and Control. Vol. 1B. Elsevier, Amsterdam.

    Google Scholar 

  • Hocking R.R. 1976. The analysis and selection of variables in linear regression. Biometrics 32: 1–49.

    Google Scholar 

  • Holling C.S. 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91: 385–398.

    Google Scholar 

  • Hussey N.W. and Parr W.J. 1963. The effect of the glasshouse red spider mite Tetranychus urticae Koch (Acarina, Tetranychidae) on the yield of cucumbers. J. hort. Sci. 38: 255–263.

    Google Scholar 

  • Hussey N.W., Parr W.J. and Gould H.J. 1965. Observations on the control of Tetranychus urticae Koch on cucumbers by the predatory mite Phytoseiulus riegeli Dosse. Entomol. Exp. Appl. 8: 271–281.

    Google Scholar 

  • Ivlev V.S. 1961. Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven.

    Google Scholar 

  • Janssen A. and Sabelis M.W. 1992. Phytoseiid life-histories, local predator-prey dynamics, and strategies for control of tetranychid mites. Exp. Appl. Acarol. 14: 233–250.

    Google Scholar 

  • Kaiser H. 1983. Small scale spatial heterogeniety influences predation success in an unexpected way: Model experiments on the functional response of predatory mites (Acarina). Oecologia 56: 249–256.

    Google Scholar 

  • Krishnamurty G.B., Kasovia-Schmitt P. and Ostroff D.J. 1994. Statistics. An interactive text for the health and life sciences. Jones and Bartletts Publishers, Boston.

    Google Scholar 

  • Kuchlein J.H. 1966. Mutual interference among the predacious mite Typhlodromus longipilus Nesbitt (Acari, Phytoseiidae) I. Effects of predator density on oviposition rate and migration tendency. Meded. Rijksfac. Landbouwwet. Gent. 31: 740–746.

    Google Scholar 

  • Lei G.C. and Hanski I. 1997. Metapopulation structure of Cotesia melitaearum, a specialist parasitoid of the butterfly Melitaea cinxia. Oikos 78: 91–100.

    Google Scholar 

  • McCauley E., Kendall B.E., Janssen A., Wood S., Murdoch W.W., Hosseini P. et al. 2000. Inferring colonization processes from population dynamics in spatially structured predator-prey systems. Ecology 81: 3350–3361.

    Google Scholar 

  • Murdoch W.W. and Briggs C.J. 1996. Theory for biological control: Recent developments. Ecology 77: 2001–2013.

    Google Scholar 

  • Nachman G. 1974. Principles of biological control of the two-spotted spider mite Tetranychus urticae Koch by means of the predatory mite Phytoseiulus persimilis Athias-Henriot examined by means of modeling and laboratory experiments. M.Sc., Univ. of Copenhagen, (in Danish) (unpublished).

  • Nachman G. 1981. Temporal and spatial dynamics of an acarine predator-prey system. J. Anim. Ecol. 50: 435–451.

    Google Scholar 

  • Nachman G. 1999. The effect of dispersal on the dynamics and persistence of an acarine predator-prey system in a patchy environment. In: Needham G.R., Mitchell R., Horn D.J. and Welbourn W.C. (eds), Acarology IX, Symposia. Vol. 2. Ohio Biological Survey, Columbus, Ohio, pp. 175–184.

    Google Scholar 

  • Nachman G. 2001. Predator-prey interactions in a non-equilibrium context: the metapopulation approach to modeling "hide-and-seek" dynamics in a spatially explicit tri-trophic system. Oikos 94: 72–88.

    Google Scholar 

  • Nachman G. and Zemek R. 2002a. Interactions in a tritrophic acarine predator-prey metapopulation system III: Effects of Tetranychus urticae (Acari: Tetranychidae) on host plant condition. Exp. Appl. Acarol. 26: 27–42.

    Google Scholar 

  • Nachman G. and Zemek R. 2002b. Interactions in a tritrophic acarine predator-prey metapopulation system IV: Effects of host plant condition on Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 26: 43–70.

    Google Scholar 

  • Oaten A. 1977. Transit time and density-dependent predation on a patchily distributed prey. Am. Natur. 111: 1061–1075.

    Google Scholar 

  • Oatman E.R., McMurtry J.A., Shorey H.H. and Voth V. 1967. Studies on integrating Phytoseiulus persimilis releases, chemical applications, cultural manipulations, and natural predation for control of the two-spotted spider mite on strawberry in southern California. J. Econ. Entomol. 60: 1344–1351.

    Google Scholar 

  • Ohnesorge B. 1981. Populationsdynamische Untersuchungen in einem Räuber-Beutetier-System: Phytoseilus persimilis A.-H. (Acarina, Phytoseiidae) und Tetranychus urticae Koch. Z. ang. Ent. 91: 25–49.

    Google Scholar 

  • Partridge L. 1989. Lifetime reproductive success and life-history evolution. In: Newton I. (ed.), Lifetime Reproduction in Birds. Academic Press, London, pp. 421–440.

    Google Scholar 

  • Pels B. and Sabelis M.W. 1999. Local dynamics, overexploitation and predator dispersal in an acarine predator-prey system. Oikos 86: 573–583.

    Google Scholar 

  • Ricker W.E. 1973. Linear regressions in fishery research. J. Fisheries Research Board of Canada 30: 409–434.

    Google Scholar 

  • Sabelis M.W. 1985. Capacity for population increase. In: Helle W. and Sabelis M.W. (eds), Spider Mites, Their Biology, Natural Enemies and Control. Elsevier, Amsterdam, pp. 35–41.

    Google Scholar 

  • Sabelis M.W. and Dicke M. 1985. Long-range dispersal and searching behaviour. In: Helle W. and Sabelis M.W. (eds), Spider Mites, Their Biology, Natural Enemies and Control. Elsevier, Amsterdam, pp. 141–160.

    Google Scholar 

  • SAS Inst. 1994. AS/STAT User's Guide. Vol. 1 and 2. SAS Institute Inc, Cary, NC, 4th printing.

    Google Scholar 

  • Siegel S. and Castellan N.J. 1988. Nonparametric Statistics for the Behavioral Sciences. 2nd edn. McGraw-Hill, New York, 399 pp.

    Google Scholar 

  • Sokal R.R. and Rohlf F.J. 1995. Biometry. 3rd edn. W.H. Freeman and Co., New York, 887 pp.

    Google Scholar 

  • Stenseth C. 1979. Effect of temperature and humidity on the development of Phytoseiulus persimilis and its ability to regulate populations of Tetranychus urticae (Acarina: Phytoseiidae, Tetranychidae). Entomophaga 24: 311–317.

    Google Scholar 

  • Takafuji A. and Chant D.A. 1976. Comparative studies of two species of predacious phytoseiid mites (Acarina: Phytoseiidae), with special reference to their responses to the density of their prey. Res. Popul. Ecol. 17: 255–310.

    Google Scholar 

  • van Baalen M. and Sabelis M.W. 1995. The milker-killer dilemma in spatially structured predator-prey interactions. Oikos 74: 391–400.

    Google Scholar 

  • Walde S.J. 1994. Immigration and the dynamics of a predator-prey interaction in biological control. J. Anim. Ecol. 63: 337–346.

    Google Scholar 

  • Walde S.J. and Nachman G. 1999. Dynamics of spatially structured spider mite populations. In: Hawkins B.A. and Cornell H.V. (eds), Theoretical Approaches to Biological Control. Cambridge University Press, Cambridge, pp. 163–189.

    Google Scholar 

  • Zemek R. and Nachman G. 1998. Interactions in a tritrophic acarine predator-prey metapopulation system: effects of Tetranychus urticae on the dispersal rates of Phytoseiulus persimilis (Acarina: Tetranychidae, Phytoseiidae). Exp. Appl. Acarol. 22: 259–278.

    Google Scholar 

  • Zemek R. and Nachman G. 1999. Interactions in a tritrophic acarine predator-prey metapopulation system: prey location and distance moved by Phytoseiulus persimilis (Acari: Phytoseiidae). Exp. Appl. Acarol. 23: 21–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gösta Nachman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachman, G., Zemek, R. Interactions in a tritrophic acarine predator-prey metapopulation system V: Within-plant dynamics of Phytoseiulus persimilis and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Exp Appl Acarol 29, 35–68 (2003). https://doi.org/10.1023/A:1024273327807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024273327807

Navigation