Skip to main content
Log in

Effective population size and temporal genetic change in stream resident brown trout (Salmo trutta, L.)

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Temporal genetic data may be used forestimating effective population size (N e) and for addressing the `temporal stability' of population structure, two issues of central importance for conservation and management. In this paper we assess the amount of spatio-temporal genetic variation at 17 di-allelic allozyme loci and estimate current N e in two populations of stream resident brown trout (Salmo trutta) using data collected over 20 years. The amount ofpopulation divergence was found to bereasonably stable over the studied time period.There was significant temporal heterogeneitywithin both populations, however, and N e was estimated as 19 and 48 for the twopopulations. Empirical estimates of theprobability of detecting statisticallysignificant allele frequency differencesbetween samples from the same populationseparated by different numbers of years wereobtained. This probability was found to befairly small when comparing samples collectedonly a few years apart, even for theseparticular populations that exhibit quiterestricted effective sizes. We discuss someimplications of the present results for browntrout population genetics and conservation, andfor the analysis of temporal genetic change inpopulations with overlapping generations ingeneral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allendorf FW, Mitchell N, Ryman N, Stå hl G (1977) Isozyme loci in brown trout (Salmo trutta L.): detection and interpretation from population data. Hereditas, 86, 179-190.

    Google Scholar 

  • Allendorf FW, Phelps SR (1981) Use of allelic frequencies to describe population structure. Can. J. Fish. Aquat. Sci., 38, 1507-1514.

    Google Scholar 

  • Allendorf FW, Ståhl G, Ryman N (1984) Silencing of duplicate genes: a null allele polymorphism for lactate dehydrogenase in brown trout (Salmo trutta). Mol. Biol. Evol., 1, 238-248.

    Google Scholar 

  • Allendorf FW, Leary RF (1988) Conservation and distribution of genetic variation in a polytypic species, the cutthroat trout. Cons. Biol., 2, 170-184.

    Google Scholar 

  • Banks MA, Rashbrook VK, Calavetta MJ, Dean CA, Hedgecock D (2000) Analysis of microsatellite DNA resolves genetic structure and diversity of chinook salmon (Oncorhynchus tshawytscha) in California's Central Valley. Can. J. Fish. Aquat. Sci., 57, 915-927.

    Google Scholar 

  • Carlsson J, Olsén KH, Nilsson J, øverli ø, Stabell OB (1999) Microsatellites reveal fine-scale genetic structure in streamliving brown trout. J. Fish. Biol., 55, 1290-1303.

    Google Scholar 

  • Carlsson J, Nilsson J (2000) Population genetic structure of brown trout (Salmo trutta L.) within a northern boreal forest stream. Hereditas, 132, 173-181.

    Google Scholar 

  • Carlsson J, Nilsson J (2001) Effects of geomorphological structures on genetic differentiation among brown trout populations in a northern boreal river drainage. Trans. Am. Fish. Soc., 130, 36-45.

    Google Scholar 

  • Christiansen FB (1988) TheWahlund effect with overlapping generations. Am. Nat., 131, 149-156.

    Google Scholar 

  • Crow JF, Kimura M (1970) An Introduction to Population Genetics Theory. Burgess, Minneapolis.

    Google Scholar 

  • Elliott JM (1993) The pattern of natural mortality throughout the life cycle in contrasting populations of brown trout, Salmo trutta L. Fish. Res., 17, 123-136.

    Google Scholar 

  • Elliott JM (1994) Quantitative Ecology and the Brown Trout. Oxford University Press, Oxford.

    Google Scholar 

  • Estoup A, Rousset F, Michalakis Y, Cornuet J-M, Adriamanga M, Guyomard R (1998) Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol. Ecol., 7, 339-353.

    Google Scholar 

  • Ferguson A (1989) Genetic differences among brown trout, Salmo trutta, stocks and their importance for the conservation and management of the species. Freshw. Biol., 21, 35-46.

    Google Scholar 

  • Filipsson O (1967) Åldersbestämning av röding med hjälp av otoliter. (Age determination of Arctic char by means of otoliths (In Swedish)), Information från Sötvattenslaboratoriet (5), 11 pp.

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet. Res., 66, 95-107.

    Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Conservation Biology: an Evolutionary-ecological Perspective (eds. Soulé M, Wilcox B), pp. 135-149. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Funk WC, Tallmon DA, Allendorf FW (1999) Small effective population size in the long-toed salamander. Mol. Ecol., 8, 1633-1640.

    Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2000) Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar L.). Mol. Ecol., 9, 615-628.

    Google Scholar 

  • Garcia-Marin JL, Jorde PE, Ryman N, Utter F, Pla C (1991) Management implications of genetic differentiation between native and hatchery populations of brown trout (Salmo trutta) in Spain. Aquaculture, 95, 235-249.

    Google Scholar 

  • Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J. Hered., 86, 485-486.

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995).

  • Guyomard R, Krieg F (1983) Electrophoretic variation in six populations of brown trout (Salmo trutta L.). Can. J. Genet. Cytol., 25, 403-413.

    Google Scholar 

  • Hansen MM, Loeschcke V, Rasmussen G, Simonsen V (1993) Genetic differentiation among Danish brown trout (Salmo trutta) populations. Hereditas, 118, 177-185.

    Google Scholar 

  • Hansen MM, Loeschcke V (1996) Temporal variation in mitochondrial DNA haplotype frequencies in a brown trout (Salmo trutta L.) population that shows stability in nuclear allele frequencies. Evolution, 50, 454-457.

    Google Scholar 

  • Hedgecock D, Chow V, Waples RS (1992) Effective population numbers of shellfish broodstocks estimated from temporal variance in allelic frequencies. Aquaculture, 108, 215-232.

    Google Scholar 

  • Hill WG (1979) A note on effective population size with overlapping generations. Genetics, 92, 317-322.

    Google Scholar 

  • Jordan WC, Youngson AF, Hay DW, Ferguson A (1992) Genetic protein variation in natural populations of Atlantic salmon (Salmo salar) in Scotland: temporal and spatial variation. Can. J. Fish. Aquat. Sci., 49, 1863-1872.

    Google Scholar 

  • Jorde PE, Gitt A, Ryman N (1991) New biochemical markers in the brown trout (Salmo trutta L.). J. Fish. Biol., 39, 451-454.

    Google Scholar 

  • Jorde PE (1994) Allozymes in Scandinavian Brown Trout (Salmo trutta L.). Report from the Division of Population Genetics, Stockholm University, Stockholm.

  • Jorde PE, Ryman N (1995) Temporal allele frequency change and estimation of effective size in populations with overlapping generations. Genetics, 139, 1077-1090.

    Google Scholar 

  • Jorde PE, Ryman N (1996) Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics, 143, 1369-1381.

    Google Scholar 

  • Jorde PE, Palm S, Ryman N (1999) Estimating genetic drift and effective population size from temporal shifts in dominant gene marker frequencies. Mol. Ecol., 8, 1171-1178.

    Google Scholar 

  • Kalinowski ST, Waples RS (2002) Relationship of effective to census size in fluctuating populations. Cons. Biol., 16, 129-136.

    Google Scholar 

  • Kanda N, Allendorf FW(2001) Genetic population structure of bull trout from the Flathead River basin as shown by microsatellites and mitochondrial DNA markers. Trans. Am. Fish. Soc., 130, 92-106.

    Google Scholar 

  • Laikre L, Jorde PE, Ryman N (1998) Temporal change of mitochondrial DNA haplotype frequencies and female effective size in a brown trout (Salmo trutta) population. Evolution, 52, 910-915.

    Google Scholar 

  • Laikre L, ed. (1999) Conservation genetic management of brown trout (Salmo trutta) in Europe. Report by the Concerted action on identification, management and exploitation of genetic resources in the brown trout (‘TROUTCONCERT’; EU FAIR CT97-3882).

  • Laikre L, Järvi T, Johansson L, Palm S, Rubin J-F, Glimsäter CE, Landergren P, Ryman N (2002) Spatial and temporal population structure of sea trout at the Island of Gotland, Sweden, delineated from mitochondrial DNA. J. Fish. Biol., 60, 49-71.

    Google Scholar 

  • Lehmann T, Hawley WA, Grebert H, Collins FH (1998) The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol. Biol. Evol., 15, 264-276.

    Google Scholar 

  • Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol., 7, 963-974.

    Google Scholar 

  • Marshall GTH, Beaumont AR, Wyatt R (1992) Genetics of brown trout (Salmo trutta L.) stocks above and below impassable falls in the Conwy river system, North Wales. Aquat. Living. Resour., 5, 9-13.

    Google Scholar 

  • Miller LM, Kapuscinski AR (1997) Historical analysis of genetic variation reveals low effective population size in a northern pike (Esox lucius) population. Genetics, 147, 1249-1258.

    Google Scholar 

  • Moffet IJJ, Crozier WW (1996) A study of temporal genetic variation in a natural population of Atlantic salmon in the River Bush, Northern Ireland. J. Fish. Biol., 48, 302-306.

    Google Scholar 

  • Moran P, Pendas AM, Izquierdo JI, Lobon-Cervia J, García-Vázquez E (1995) Temporal stability of isozyme allele frequencies in wild populations of brown trout (Salmo trutta, L.). Hereditas, 123, 221-225.

    Google Scholar 

  • Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics, 98, 625-640.

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V (1999) Genetic variation in time and space: microsatellite analysis of extinct and extant populations of Atlantic salmon. Evolution, 53, 261-268.

    Google Scholar 

  • Palm S, Ryman N (1999) Genetic basis of phenotypic differences between transplanted stocks of brown trout. Ecol. Freshw. Fish, 8, 169-180.

    Google Scholar 

  • Pollak E (1983) A new method for estimating the effective population size from allele frequency changes. Genetics, 104, 531-548.

    Google Scholar 

  • Prodöhl PA, Walker AF, Hynes R, Taggart JB, Ferguson A (1997) Genetically monomorphic brown trout (Salmo trutta L.) populations, as revealed by mitochondrial DNA, multilocus and singlelocus minisatellite (VNTR) analyses. Heredity, 79, 208-213.

    Google Scholar 

  • Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for estimating the effective number of breeders from heterozygoteexcess in progeny. Genetics, 144, 383-387.

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered., 86, 248-249.

    Google Scholar 

  • Rieman BE, Allendorf FW (2001) Effective population size and genetic conservation criteria for bull trout. North Am. J. Fish. Mana., 21, 756-764.

    Google Scholar 

  • Riffel M, Storch V, Schreiber A (1995) Allozyme variability of brown trout (Salmo trutta L.) populations across the Rhenanian-Danubian watershed in southwest Germany. Heredity, 74, 241-249.

    Google Scholar 

  • Robertson A (1965) The interpretation of genotypic ratios in domestic animal populations. An. Prod., 7, 319-324.

    Google Scholar 

  • Robson DS, Chapman DG (1961) Catch curves and mortality rates. Trans. Am. Fish. Soc., 91, 181-189.

    Google Scholar 

  • Roff DA (1992) The Evolution of Life Histories: Theory and Analysis. Chapman &; Hall, New York.

    Google Scholar 

  • Ryman N (1983) Patterns of distribution of biochemical genetic variation in salmonids: differences between species. Aquaculture, 33, 1-21.

    Google Scholar 

  • Ryman N (1997) Minimizing adverse effects of fish culture: understanding the genetics of populations with overlapping generations. ICES J. Mar. Sci., 54, 1149-1159.

    Google Scholar 

  • Ryman N, Jorde PE (2001) Statistical power when testing for genetic differentiation. Mol. Ecol., 10, 2361-2373.

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN: A software for population genetics data analysis. Ver. 2.000. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva.

    Google Scholar 

  • Scribner KT, Arntzen JW, Burke T (1997) Effective number of breeding adults in Bufo bufo estimated from age-specific variation at minisatellite loci. Mol. Ecol., 6, 701-712.

    Google Scholar 

  • Shaklee JB, Allendorf FW, Morizot DC, Whitt GS (1990) Gene nomenclature for protein-coding loci in fish. Trans. Am. Fish. Soc., 119, 2-15.

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, Ed. 2. Freeman, San Francisco.

    Google Scholar 

  • Stone CE, Taggart JB, Ferguson A (1997) Single locus minisatellite DNA variation in European populations of Atlantic salmon (Salmo salar L.). Hereditas, 126, 269-275.

    Google Scholar 

  • Taggart JB, Ferguson A (1984) Allozyme variation in the brown trout (Salmo trutta L.): single locus and joint segregation inheritance studies. Heredity, 53, 339-359.

    Google Scholar 

  • Tessier N, Bernatchez L (1999) Stability of population structure and genetic diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.). Mol. Ecol., 8, 169-179.

    Google Scholar 

  • Turner TF, Richardson LR, Gold JR (1999) Temporal genetic variation of mitochondrial DNA and the female effective population size of red drum (Sciaenops ocellatus) in the northern Gulf of Mexico. Mol. Ecol., 8, 1223-1229.

    Google Scholar 

  • Turner TF, Salter LA, Gold JR (2001) Temporal-method estimates of Ne from highly polymorphic loci. Cons. Genetics, 2, 297-308.

    Google Scholar 

  • UNEP (United Nations Environment Programme) (1995) Global Biodiversity Assessment. Cambridge University Press, Cambridge.

    Google Scholar 

  • Vucetich JA, Waite TA (1998) Number of censuses required for demographic estimation of effective population size. Cons. Biol., 12, 1023-1030.

    Google Scholar 

  • Waples RS (1989a) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121, 379-391.

    Google Scholar 

  • Waples RS (1989b) Temporal variation in allele frequencies: testing the right hypothesis. Evolution, 43, 1236-1251.

    Google Scholar 

  • Waples RS (1990) Conservation genetics of Pacific salmon III. Estimating effective population size. J. Hered., 81, 277-289.

    Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J. Hered., 89, 438-450.

    Google Scholar 

  • Waples RS, Teel DJ (1990) Conservation genetics of Pacific salmon I. Temporal changes in allele frequency. Cons. Biol., 4, 144-156.

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.

    Google Scholar 

  • Williams T, Bedford BC (1974) The use of otoliths for age determination. In: The Ageing of Fish (ed. Bagenal T), pp. 114-123. Unwin Bros. Ltd., Surrey.

    Google Scholar 

  • Williamson EG, Slatkin M (1999) Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics, 152, 755-761.

    Google Scholar 

  • Youngs WD, Robson DS (1978) Estimation of population number and mortality rates. In: Methods for Assessment of Fish Production in Fresh Water (ed. Bagenal T), pp. 137-164. Blackwell Scientific, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Palm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palm, S., Laikre, L., Jorde, P.E. et al. Effective population size and temporal genetic change in stream resident brown trout (Salmo trutta, L.). Conservation Genetics 4, 249–264 (2003). https://doi.org/10.1023/A:1024064913094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024064913094

Navigation