Skip to main content
Log in

The Stenlying Effect of High Hydrostatic Pressure on Thermally and Hydrolytically Labile Nanosized Carriers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate whether high hydrostatic pressure (HHP) treatment allows the sterilization of thermosensitive polymer nanoparticle suspensions without jeopardizing their physicochemical integrity.

Methods. Application of HHP was explored on a wide variety of thermosensitive poly(cyanoacrylate) nanoparticles, varying by their type (nanospheres or nanocapsules), by their preparation method (nanoprecipitation or emulsion/solvent evaporation), as well as by their surface characteristics. Physicochemical characterization before and after pressurization included turbidimetry, size measurement, zeta potential, scanning electron microscopy and infrared analysis. A sterility test also conducted according to pharmacopoeial requirements on an importantly contaminated nanoparticle suspension.

Results. Poly(cyanoacrylate) nanoparticles appeared to be extremely baroresistant. Continuous or oscillatory HHP treatment up to 500 MPa during 30 min induced generally neither physical, nor chemical damage. However, precautions should be taken when surface modifiers are adsorbed onto nanoparticles, as a layer destabilization may occur. Finally, this process allowed the successful inactivation of vegetative bacteria, yeast, and fungi.

Conclusions. This work proposes HHP as a new method for polymer drug carriers sterilization, taking into account that further exploration in this area is needed to propose novel protocols for spores inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. T. Peracchia, C. Vauthier, M. Popa, F. Puisieux, and P. Couvreur. Investigation of the formation of sterically stabilized poly(ethylene glycol/isobutylcyanoacrylate) nanoparticles by chemical grafting of polyethylene glycol during the polymerization of isobutyl cyanoacrylate. S.T.P. Pharma. Sciences 7:513-520 (1997).

    Google Scholar 

  2. K. A. Athanasiou, G. G. Niederauer, and C. Mauli Agrawal. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93-102 (1996).

    Google Scholar 

  3. P. Sommerfeld, U. Schroeder, and B. A. Sabel. Sterilization of unloaded polybutylcyanoacrylate nanoparticles. Int. J. Pharm. 164:113-118 (1998).

    Google Scholar 

  4. J. M. Rollot, P. Couvreur, L. Roblot-Treupel, and F. Puisieux. Physicochemical and morphological characterization of polyisobutyl cyanoacrylate nanocapsules. J. Pharm. Sci. 75:361-364 (1986).

    Google Scholar 

  5. V. Masson, F. Maurin, H. Fessi, and J. P. Devissaguet. Influence of sterilization processes on poly(ε-caprolactone) nanospheres. Biomaterials 18:327-335 (1997).

    Google Scholar 

  6. E. Allémann, J. C. Leroux, R. Gurny, and E. Doelker. In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm. Res. 10:1732-1737 (1993).

    Google Scholar 

  7. Y. N. Konan, R. Gurny, and E. Allémann. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int. J. Pharm. 233:239-252 (2002).

    Google Scholar 

  8. J. Y. Zheng and W. Bosch. Sterile filtration of NanoCrystal™ drug formulations. Drug Dev. Ind. Pharm. 23:1087-1093 (1997).

    Google Scholar 

  9. M. Fouarge, M. Dewulf, P. Couvreur, M. Roland, and H. Vranckx. Development of dehydroemetine nanoparticles for the treatment of visceral leishmaniasis. J. Microencapsul. 6:29-34 (1989).

    Google Scholar 

  10. E. Y. Wuytack, A. M. J. Diels, and C. W. Michiels. Bacterial inactivation by high-pressure homogenisation and high pressure hydrostatic pressure. Int. J. Food Microbiol. (2002).

  11. J. C. Cheftel. Review: High-pressure, microbial inactivation and food preservation. Food Sci. Technol. Int. 1:75-90 (1995).

    Google Scholar 

  12. H. Ludwig, C. Bieler, K. Hallbauer, and W. Scigalla. Inactivation of microrganisms by hydrostatic pressure. In C. Balny, R. Hayashi, K. Heremans, and P. Masson (eds.) High Pressure and Biotechnology, Editions INSERM, Paris, 1992, pp. 67-75.

    Google Scholar 

  13. United States Food and Drug Administration. Kinetics of microbial inactivation for alternative food processing technologies: high pressure processing. Center for Food Safety and Applied Nutrition, June, 2002.

  14. G. W. Gould. Preservation: past, present and future. Brit. Med. Bull. 56:84-96 (2000).

    Google Scholar 

  15. I. Brigger, P. Chaminade, D. Desmaële, M. T. Peracchia, J. d'Angelo, R. Gurny, M. Renoir, and P. Couvreur. Near infrared with principal component analysis as a novel analytical approach for nanoparticle technology. Pharm. Res. 17:1124-1131 (2000).

    Google Scholar 

  16. H. Fessi, F. Puisieux, J. Ph. Devissaguet, N. Ammoury, and S. Benita. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55:R1-R4 (1989).

    Google Scholar 

  17. R. Gurny, N. A. Peppas, D. D. Harrington, and G. S. Banker. Development of biodegradable and injectable latices for controlled release of potent drugs. Drug Develop. Ind. Pharm. 7:1-25 (1981).

    Google Scholar 

  18. R. H. Müller, C. Lherm, J. Herbort, and P. Couvreur. In vitro degradation of alkylcyanoacrylate nanoparticles. Biomaterials 11:590-595 (1990).

    Google Scholar 

  19. J. Kreuter. Poly(alkylcyanoacrylate) nanoparticles. Method Enzymol. 112:129-138 (1985).

    Google Scholar 

  20. P. Masson. Action de la pression hydrostatique sur les protéines: émergence de la biotechnologie des hautes pressions, applications pharamceutiques et médicales potentielles. Ann. Pharm. Fr. 57:49-55 (1999).

    Google Scholar 

  21. Y. Rigaldie, A. Largeteau, G. Lemagnen, D. Larrouture, R. Haller, G. Demazeau, and L. Grislain. Sterilisation of liquid and semi-solid pharmaceutical forms using high pressure technology. High Press. Res., in press.

  22. A. G. Macdonald. Effects of high hydrostatic pressure on natural and artificial membranes. In C. Balny, R. Hayashi, K. Heremans, and P. Masson (eds.) High Pressure and Biotechnology, Editions INSERM, Paris, 1992, pp. 67-75.

    Google Scholar 

  23. J. P. P. M. Smelt. Recent advances in the microbiology of high pressure processing. Trends Food Sci. Tech. 9:152-158 (1998).

    Google Scholar 

  24. I. Hayakawa, T. Kanno, K. Yoshiyama, and Y. Fujio. Oscillatory compared with continuous high pressure sterilization on Bacillus stearothermophilus spores. J. Food Sci. 59:164-167 (1994).

    Google Scholar 

  25. B. Sojka and H. Ludwig. Effects of rapid pressure changes on the inactivation of bacillus subtilis spores. Pharm. Ind. 59:436-438 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Couvreur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brigger, I., Armand-Lefevre, L., Chaminade, P. et al. The Stenlying Effect of High Hydrostatic Pressure on Thermally and Hydrolytically Labile Nanosized Carriers. Pharm Res 20, 674–683 (2003). https://doi.org/10.1023/A:1023267304096

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023267304096

Navigation