Skip to main content
Log in

A System-Approach Method for the Adjustment of Time-Varying Continuous Drug Infusion in Individual Patients: A Simulation Study

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The aim of this simulation study was to present a system-approach method for adjustment of continuous drug infusions at time-varying rates, aimed at achieving and then maintaining required drug concentration–time profiles in patients. The method presented can be used for safe and cost-effective individualization of drug dosing by computer-controlled infusion pumps. Utilization of this method is exemplified by simulation experiments, aimed at adjusting continuous infusions of Factor VIII (FVIII) at time-varying rates, which would theoretically yield required concentration–time profiles of FVIII in hemophilia A patients over several days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. G. Singh. Systems and Control Encyclopedia, Theory, Technology and Application. Pergamon Press, Oxford, 1987.

    Google Scholar 

  2. J. G. Wagner. Fundamentals of Clinical Pharmacokinetics. Drug Inteligence Publications Inc., Hamilton, 1975.

    Google Scholar 

  3. M. Gibaldi and D. Perrier. Pharmacokinetics. Second Edition. Marcel Dekker Inc., New York, 1982.

    Google Scholar 

  4. P. Veng-Pedersen. Linear and nonlinear system approaches in pharmacokinetics: how much do they have to offer? I. General consideration. J. Pharmacokin. Biopharm. 16:413–472 (1988).

    Google Scholar 

  5. P. Veng-Pedersen. Linear and nonlinear system approaches in pharmacokinetics: how much do they have to offer? II. The response mapping operator (RMO) approach. J. Pharmacokin. Biopharm. 16:543–571 (1988).

    Google Scholar 

  6. J. M. van Rossum, J. E. G. M. de Bie, G. van Lingen, and H. W. A. Teeuwen. Pharmacokinetics from dynamic systems point of view. J. Pharmacokin. Biopharm. 17:365–392 (1989).

    Google Scholar 

  7. J. M. van Rossum and J. E. G. M. de Bie. Systems dynamics in clinical pharmacokinetics. An introduction. Clin. Pharmacokinet. 17:27–44 (1989).

    PubMed  Google Scholar 

  8. D. Verotta. Concepts, properties, and applications of linear systems do describe distribution, identify input, and control endogenous substances and drugs in biological systems. Clin. Rev. Biomed. Eng. 24:73–139 (1996).

    Google Scholar 

  9. W. F. Ebling, D. R. Wada, and D. R. Stanski. From piecewise to full physiologic pharmacokinetic modeling: applied to thiopental disposition in the rat. J. Pharmacokin. Biopharm. 22:259–292 (1994).

    Google Scholar 

  10. W. R. Gillespie. Convolution-based approaches for in vivo-in vitro correlation modeling. Adv. Exp. Med. Biol. 423:53–65 (1997).

    PubMed  Google Scholar 

  11. D. J. Cutler. Numerical deconvolution by least squares: Use of prescribed input function. J. Pharmacokin. Biopharm. 6:227–241 (1978).

    Google Scholar 

  12. W. R. Gillespie and P. Veng-Pedersen. A polyexponential deconvolution method. Evaluation of the ''gastrointestinal bioavailability'' and mean in vivo dissolution time of some ibuprofen dosage forms on appropriate constraints on the initial input response when applying deconvolution. J. Pharmacokin. Biopharm. 13:289–307 (1985).

    Google Scholar 

  13. D. Verotta. Deconvolution. Anaesth. Rev. 2:525–259 (1994).

    Google Scholar 

  14. Z. Yu, J. B. Schwartz, E. T. Sugita, and H. C. Foehl. Five numerical deconvolution methods for biopharmaceutics and pharmacokinetics studies. Biopharm. Drug Dispos. 17: 521–540 (1996).

    PubMed  Google Scholar 

  15. L. Ljung. System Identification-Theory for the User. Second Edition. PTR Prentice Hall, Upper Saddle River, 1999.

    Google Scholar 

  16. L. Dedík and M. Vurišová. System Approach in Technical, Environmental and Bio-medical Studies. Publishing House of Slovak University of Technology, Bratislava, 1999.

    Google Scholar 

  17. L. Dedík and M. Vurišová. Frequency response method in pharmacokinetics. J. Pharmacokin. Biopharm. 22:293–307 (1994).

    Google Scholar 

  18. L. Dedík and M. Vurišová. CXT-a programme for analysis of linear dynamic systems in the frequency domain. Int. J. Bio-Med. Comput. 39:231–241 (1995).

    Google Scholar 

  19. M. Vurišová, L. Dedík, and M. Balan. Building a structured model of a complex pharmacokinetic system with time delays. Bull. Math. Biol. 57:787–808 (1995).

    PubMed  Google Scholar 

  20. L. Dedík and M. Vurišová. CXT-MAIN: a software package for determination of the analytical form of the pharmacokinetic system weighting function. Comput. Meth. Programs Biomed. 51:183–192 (1996).

    Google Scholar 

  21. M. Vurišová, and L. Dedík. Modeling in frequency domain used for assessment of in vivo dissolution profile. Pharm. Res. 14:860–864 (1997).

    PubMed  Google Scholar 

  22. L. Dedík and M. Vurišová, and L'Ághová. The frequency response method used in modeling environmental systems: a working example. Ecol. Modell. 101:175–184 (1997).

    Google Scholar 

  23. M. Vurišová, L. Dedík, A. Bátorová, A. Sakalová, and J. Hedera. Pharmacokinetics of Factor VIII in hemophilia A patients assessed by frequency response method. Meth. Find. Exper. Clin. Pharmacol. 20:217–226 (1998).

    Google Scholar 

  24. L. Dedík, M. Vurišová,, and A. Bátorová. Weighting function used for adjustment of multiple-bolus drug dosing. Meth. Find. Exper. Clin. Pharmacol. 22:543–549 (2000).

    Google Scholar 

  25. L. Dedík and M. Vurišová. System-approach methods for modeling and testing similarity of in vitro dissolutions of drug dosage formulations. Comput. Meth. Programs Biomed. 69:49–55 (2002).

    Google Scholar 

  26. Y. L. He, Y. Tanigawara, A. Kamiya, and R. Hori. Moment analysis of drug disposition in kidney. VI: Assessment of in vivo transmembrane transport of p-aminohippurate in tubular epithelium. J. Pharmacokin. Biopharm. 19:667–690 (1991).

    Google Scholar 

  27. H. Scha¨chinger, B. U. Müller, W. Strobel, J. Drewe, and R. Ritz. Effect of midazolam on transfer function between beat-to-beat arterial pressure and inter-beat interval length. Br. J. Anaesth. 84:316–322 (2000).

    PubMed  Google Scholar 

  28. D. Brockmeier, H. J. Dengler, and D. Voegele. In vitro-in vivo correlation of dissolution, a time scaling problem? Transformation of in vitro results to the in vivo situation, using theophylline as a practical example. Eur. J. Clin. Pharmacol. 28:291–300 (1985).

    PubMed  Google Scholar 

  29. T. Hayashi, T. Ogura, and Y. Takagishi. New evaluation method for in vitro/in vivo correlation of enteric-coated multiple unit dosage forms. Pharm. Res. 12:1333–1337 (1995).

    PubMed  Google Scholar 

  30. V. Veng-Pedersen. Noncompartmentally-based pharmacokinetic modeling. Adv. Drug Deliv. Rev. 48:265–300 (2001).

    PubMed  Google Scholar 

  31. M. Morfini, A. Messori, and G. Longo. Factor VIII pharmacokinetics: intermittent infusion versus continuous infusion. Blood Coagulat. Fibrinol. 7(suppl.1):S11-S14 (1996).

    Google Scholar 

  32. U. Martinowitz, S. Schulman, S. Gitel, H. Horozowski, M. Heim, and D. Varon. Adjusted dose continuous infusion of factor VIII in patients with hemophilia A. Br. J. Haematol. 82:729–734 (1992).

    PubMed  Google Scholar 

  33. S. Schulman, S. Gitel, A. Zivelin, O. Katsarou, T. Mandalaki, D. Varon, U. Martinowitz. The feasibility of using concentrates containing factor IX for continuous infusion. Haemophilia 1:103–110 (1995).

    Google Scholar 

  34. C. H. Ménart, P. Y. Petit, O. Attali, D. Massignon, M. Dechavanne, and C. Négrier. Efficacy and safety of continuous infusion of Mononine during five surgical procedures in three hemophilic patients. Am. J. Hematol. 58:110–116 (1998).

    PubMed  Google Scholar 

  35. M. Carlsson, E. Berntorp, S. Björkman, and K. Lindvall. Pharmacokinetic dosing in prophylactic treatment of hemophilia A. Eur. J. Haematol. 51:247–252 (1991).

    Google Scholar 

  36. S. Björkman and M. Carlsson. The pharmacokinetics of factor VIII and factor IX: methodology, pitfalls and applications. Haemophilia 3:1–8 (1997).

    Google Scholar 

  37. M. Carlsson, S. Björkman, and E. Berntorp. Multidose pharmacokinetics of factor IX: implications for dosing in prophylaxis. Haemophilia 4:83–88 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Ďurišová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ďurišová, M., Dedík, L. A System-Approach Method for the Adjustment of Time-Varying Continuous Drug Infusion in Individual Patients: A Simulation Study. J Pharmacokinet Pharmacodyn 29, 427–444 (2002). https://doi.org/10.1023/A:1022968319095

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022968319095

Navigation