Skip to main content
Log in

Upregulation of mRNA Encoding the M5 Muscarinic Acetylcholine Receptor in Human T- and B-Lymphocytes During Immunological Responses

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lymphocytes possess an independent, non-neuronal cholinergic system. Moreover, both T- and B-lymphocytes express multiple muscarinic acetylcholine receptors (mAChR). To obtain a better understanding of the regulatory mechanisms governing mAChR gene expression in the lymphocytic cholinergic system, we examined the effects of lymphocyte activation on expression of mAChR mRNA. Stimulation of T- and B-lymphocytes, respectively, with T-cell activator phytohemagglutinin and B-cell activator Staphylococcus aureus Cowan I upregulated M5 mAChR mRNA expression in the CEM human leukemic T-cell line and in the Daudi B-cell line, which served as models of lymphocytes. In striking contrast, M3 and M4 mAChR mRNA expression was not affected in either cell line. Nonetheless, stimulating lymphocytes with phorbol 12-myristate 13-acetate, a protein kinase C activator, plus ionomycin, a calcium ionophore, upregulated expression of both M3 and M5 mAChR mRNA. This represents the first demonstration that immunological stimulation leads to M5 mAChR gene expression in lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fujii, T., Tajima, S., Yamada, S., Watanabe, Y., Sato, K. Z., Matsui, M., Misawa, H., Fujimoto, K., Kasahara, T., and Kawashima, K. 1999. Constitutive expression of mRNA for the same choline acetyltransferase as that in the nervous system, an acetylcholine-synthesizing enzyme, in human leukemic T-cell lines. Neurosci. Lett. 259:71–74.

    PubMed  Google Scholar 

  2. Tuček, S. 1982. The synthesis of acetylcholine in skeletal muscles of the rat. J. Physiol. 322:53–69.

    PubMed  Google Scholar 

  3. Tuček, S. 1988. Choline acetyltransferase and the synthesis of acetylcholine. Pages 125–165, in Whittaker, V. P. (ed), Handbook of Experimental Pharmacology, 86, The Cholinergic Synapse, Springer Verlag, Berlin.

    Google Scholar 

  4. Kawashima, K. and Fujii, T. 2000. Extraneuronal cholinergic system in lymphocytes. Pharmacol. Ther. 86:29–48.

    PubMed  Google Scholar 

  5. Maslinski, W., Kullberg, M., Nordstrom, O., and Bartfai, T. 1988. Muscarinic receptors and receptor mediated actions on rat thymocytes. J. Neuroimmunol. 17:265–274.

    PubMed  Google Scholar 

  6. Maslinski, W. 1989. Cholinergic receptors of lymphocytes. Brain Behav. Immunol. 3:1–14.

    Google Scholar 

  7. Fujii, T. and Kawashima, K. 2001. The non-neuronal cholinergic system: An independent, non-neuronal cholinergic system in lymphocytes. Jpn. J. Pharmacol. 85:11–15.

    PubMed  Google Scholar 

  8. Fujii, T. and Kawashima, K. 2000. Ca2+ oscillation and c-fos gene expression induced via muscarinic acetylcholine receptor stimulation in human leukemic T-and B-cell lines. Naunyn Schmiedebergs Arch.Pharmacol. 362:14–21.

    PubMed  Google Scholar 

  9. Fujii, T. and Kawashima, K. 2000. Calcium signaling and c-fos gene expression via M3 muscarinic acetylcholine receptors in human T-and B-cells. Jpn. J. Pharmacol. 84:124–132.

    PubMed  Google Scholar 

  10. Imboden, B. J., Shoback, M. D., Pattison, G., and Stobo, D. J. 1986. Cholera toxin inhibits the T-cell antigen receptor-mediated increases in inositol triphosphate and cytoplasmic free calcium. Proc. Natl. Acad. Sci. USA 83:5673–5677.

    PubMed  Google Scholar 

  11. Fujii, T., Tsuchiya, T., Yamada, S., Fujimoto, K., Suzuki, T., Kasahara, T., and Kawashima, K. 1996. Localization and synthesis of acetylcholine in human leukemic T cell lines. J. Neurosci. Res. 44:66–72.

    PubMed  Google Scholar 

  12. Fujii, T., Yamada, S., Watanabe, Y., Misawa, H., Tajima, S., Fujimoto, K., Kasahara, T., and Kawashima, K. 1998. Induction of choline acetyltransferase mRNA in human mononuclear leukocytes stimulated by phytohemagglutinin, a T-cell activator. J. Neuroimmunol. 82:101–107.

    PubMed  Google Scholar 

  13. Das, T., Sa, G., and Ray, P. K. 1999. Mechanisms of protein A superantigen-induced signal transduction for proliferation of mouse B cell. Immunol. Lett. 70:43–51.

    PubMed  Google Scholar 

  14. Karray, S., Juompan, L., Maroun, R. C., Isenberg, D., Silverman, G. J., and Zouali, M. 1998. Structural basis of the gp120 superantigen-binding site on human immunoglobulins. J. Immunol. 161:6681–6688.

    PubMed  Google Scholar 

  15. Dong, G. O., Kameyama, K., Rinken, A., and Haga, T. 1995. Ligand binding properties of muscarinic acetylcholine receptor subtypes (m1-m5) expressed in Baculovirus-infected insect cells. J. Pharmacol. Exp. Ther. 274:378–384.

    PubMed  Google Scholar 

  16. Dörje, F., Wess, J., Lambrecht, G., Tacke, R., Mutschiler, E., and Brann, M. R. 1991. Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J. Pharmacol. Exp. Ther. 256:727-733.

    PubMed  Google Scholar 

  17. Höglund, A. U. and Baghdoyan, H. A. 1997. M2, M3 and M4, but not M1 muscarinic receptor subtypes are present in rat spinal cord. J. Pharmacol. Exp. Ther. 281:470–477.

    PubMed  Google Scholar 

  18. Waelbroeck, M., Tastenoy, M., Camus, J., and Christophe, J. 1990. Binding of selective antagonists to four muscarinic receptors (M1 to M4) in rat forebrain. Mol. Pharmacol. 38:267–273.

    PubMed  Google Scholar 

  19. Bonner, T. I., Buckley, N. J., Young, A. C., and Brann, M. R. 1987. Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532.

    PubMed  Google Scholar 

  20. Bonner, T. I., Young, A. C., Brann, M. R., and Buckley, N. J. 1988. Cloning and expression of the human and rat m5 muscarinic receptor genes. Neuron 1:403–410.

    PubMed  Google Scholar 

  21. Hulme, E. C., Birdsall, N. J. M., Buckley, N. J. 1990. Muscarinic receptor subtypes. Annu. Rev. Pharmacol Toxicol. 30:633–673.

    PubMed  Google Scholar 

  22. Bany, U., Ryzewski, J., and Maslinski, W. 1999. Relative amounts of mRNA encoding four subtypes of muscarinic receptors (m2-m5) in human peripheral blood mononuclear cells. J. Neuroimmunol. 97:191–195.

    PubMed  Google Scholar 

  23. Costa, P., Auger, C. B., Traver, D. J., and Costa, L. G. 1995. Identification of m3, m4 and m5 subtypes of muscarinic receptor mRNA in human blood mononuclear cells. J. Neuroimmunol. 60:45–51.

    PubMed  Google Scholar 

  24. Fujino, H., Kitamura, Y., Yada, T., Uehara, T., and Nomura, Y. 1997. Stimulatory roles of muscarinic acetylcholine receptors on T cell antigen receptor/CD3 complex-mediated interleukin-2 production in human peripheral blood lymphocytes. Mol. Pharmacol. 51:1007–1014.

    PubMed  Google Scholar 

  25. Hellström-Lindahl, E. and Nordberg, A. 1996. Muscarinic receptor subtypes in subpopulations of human blood mononuclear cells as analyzed by RT-PCR technique. J. Neuroimmunol. 68:139–144.

    PubMed  Google Scholar 

  26. Sato, K. Z., Fujii, T., Watanabe, Y., Yamada, S., Ando, T., Fujimoto, K., and Kawashima, K. 1999. Diversity of mRNA for muscarinic acetylcholine receptor subtypes and neuronal acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines. Neurosci. Lett. 266:17–20.

    PubMed  Google Scholar 

  27. Fujino, H., Uehara, T., Murayama, T., Okuma, Y., Ariga, H., and Nomura, Y. 2000. Extracellular signal regulated protein kinase and c-Jun N-terminal kinase are involved in m1 muscarinic receptor-enhanced interleukin-2 production pathway in Jurkat cells. Biol. Pharm. Bull. 23:1198–1205.

    PubMed  Google Scholar 

  28. Kaneda, T., Kitamura, Y., and Nomura, Y. 1993. Presence of m3 subtype muscarinic acetylcholine receptors and receptor-mediated increases in the cytoplasmic concentration of Ca2+ in Jurkat, a human leukemic helper T lymphocyte line. Mol. Pharmacol. 43:356–364.

    PubMed  Google Scholar 

  29. Szelenyi, J., Paldi-Haris, P., and Hollan, S. 1987. Changes in the cholinergic system of lymphocytes due to mitogenic stimulation. Immunol. Lett. 16:49–54.

    PubMed  Google Scholar 

  30. Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–698.

    PubMed  Google Scholar 

  31. Fujii, T. and Kawashima, K. 2001. YM905, a novel M3 antagonist, inhibits Ca2+ signaling and c-fos gene expression mediated via muscarinic receptors in human T cells. Gen. Pharmacol. 35:71–75.

    Google Scholar 

  32. Fujii, T., Ushiyama, N., Hosonuma, K., Suenaga, A., and Kawashima, K. 2002. Effects of human antithymocyte globulin on acetylcholine synthesis, its release and choline acetyltransferase transcription in a human leukemic T-cell line. J. Neuroimmunol. 128:1–8.

    PubMed  Google Scholar 

  33. Rinner, I., Kawashima, K., and Schauenstein, K., 1998. Rat lymphocytes produce and secrete acetylcholine in dependent of differentiation and activation. J. Neuroimmunol. 81:31–37.

    PubMed  Google Scholar 

  34. Jain, J., McCaffrey, P. G., Valge-Archer, V. E., and Rao, A. 1992. Nuclear factor of activated T cells contains Fos and Jun. Nature 356:801–804.

    PubMed  Google Scholar 

  35. Mori, A., Suko, M., Nishizaki, Y., Kaminuma, S., Kobayashi, S., Matsuzaki, G., Yamamoto, K., Ito, K., Tsuruoka, N., and Okudaira, H. 1995. IL-5 production by CD4+ T cells of asthmatic patients is suppressed by glucocorticoids and the immunosuppressants FK506 and cyclosporin A. Int. Immunol. 7:449–457.

    PubMed  Google Scholar 

  36. Bock, H. A., Gallati, H., Zurcher, R. M., Bachofen, M., Mihatsch, M. J., Landmann, J., and Thiel, G. 1995. A randomized prospective trial of prophylactic immunosuppression with ATG-fresenius versus OKT-3 after renal transplantation. Transplantation 59:830–840.

    PubMed  Google Scholar 

  37. Fujii, T. and Kawashima, K. 2001. Activation of cholinergic system in T-lymphocytes by stimulation of CD11a molecule. Neurosci. Res. 25:S147.

    Google Scholar 

  38. Remberger, M., Svahn, B. M., Heutschke, P., Lofgren, C., and Ringden, O. 1999. Effect on cytokine release and graft-versus-host disease of different anti-T cell antibodies during conditioning for unrelated haematopoietic stem cell transplantation. Bone Marrow Transplant 24:823–830.

    PubMed  Google Scholar 

  39. Wang, S. Z., Zhu, S. Z., and el Fakahany, E. E. 1994. Efficient coupling of m5 muscarinic acetylcholine receptors to activation of nitric oxide synthase. J. Pharmacol. Exp. Ther. 268:552–557.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Kawashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, T., Watanabe, Y., Inoue, T. et al. Upregulation of mRNA Encoding the M5 Muscarinic Acetylcholine Receptor in Human T- and B-Lymphocytes During Immunological Responses. Neurochem Res 28, 423–429 (2003). https://doi.org/10.1023/A:1022840416292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022840416292

Navigation