Skip to main content
Log in

Brain Insulin: Regulation, Mechanisms of Action and Functions

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. While many questions remain unanswered, it is now well documented that, contrary to earlier views, insulin is an important neuromodulator, contributing to neurobiological processes, in particular energy homeostasis and cognition. A specific role on cognitive functions related to feeding is proposed, and it is suggested that brain insulin from different sources might be involved in the above vital functions in health and disease.

2. A molecule identical to pancreatic insulin, and specific insulin receptors, are found widely distributed in the central nervous system networks related to feeding, reproduction, or cognition.

3. The actions of insulin in the central nervous system may be under both multilevel and multifactorial controls. The amount of blood insulin reaching the brain, brain insulin stores and secretion, potential local biosynthesis and degradation of the peptide, and insulin receptors and signal transduction can be affected by metabolic factors induced by nutrients, hormones, neurotransmitters, and regulatory peptides, peripherally or in the central nervous system.

4. Glucose and serotonin regulate insulin directly in the hypothalamus and may be of importance for its biological effects. Central mechanisms regulating glucose-induced insulin secretion show some analogy with the mechanisms operating in the pancreas.

5. A cross-talk between insulin and leptin receptors has been observed in the brain, and a regulation of central insulin actions, potentially via serotonin modulation, by leptin, galanin, melanocortins, and neuropeptide Y (NPY) is suggested.

6. A more complete knowledge of the biological role of insulin in brain function and dysfunction, and of the regulatory mechanisms involved in these processes, constitutes a real advancement in the understanding of the pathophysiology of metabolic and mental diseases and could lead to important medical benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahima, R. S., and Flier, S. (2000). Leptin. Ann. Rev. Physiol. 62:413–437.

    Google Scholar 

  • Air, E. L., Benoit, S. C., Blake Smith, K. A., Clegg, D. J., and Woods, S. C. (2002a). Acute third ventricle administration of insulin decreases food intake in two paradigms. Pharmacol. Biochem. Behav. 72:423–429.

    Google Scholar 

  • Air, E. L., Benoit, S. C., Clegg, D. J., Seeley, R. J., and Woods S. C. (2002). Insulin and leptin combine additively to reduce food intake and body weight in rats. Endocrinology 143:2449–2452.

    Google Scholar 

  • Air, E. L., Strowski, M. Z., Benoit, S. C., Conarello, S. L., Salituro, G. M., and Guan, X. M. (2002b). Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nat. Med. 8:179–183.

    Google Scholar 

  • Aschford, M. L. J., Boden, P. R., and Teherne, J. M. (1990). Glucose-induced excitation of hypothalamic neurons is mediated by ATP-sensitive K+ channels. Pflügers Arch. 415:479–483.

    Google Scholar 

  • Barbaccia, M., Chuang, D., and Costa, E. (1982). Is insulin a neuromodulator? Adv. Biochem. Neuropharmacol. 33:511–518.

    Google Scholar 

  • Baskin, D. J., Porte, D. Jr., Guest, K., and Dorsa, D. M. (1983). Regional concentrations of insulin in the rat brain. Endocrinology 112:898–903.

    Google Scholar 

  • Baskin, D. G., Stein, L. J., Ikeda, H., Woods, S. C., Figlewicz, D. P., Porte, D. Jr. (1985). Genetically obese Zucker rats have abnormally low brain insulin content. Life Sci. 36:627–633.

    Google Scholar 

  • Baskin, D. G., Wilcox, B. J., Figlewicz, D. P., and Dorsa, D. M. (1988). Insulin and insulin-like growth factors in the CNS. Trends Neurosci. 11:107–111.

    Google Scholar 

  • Baura, G. D., Foster, D. M., Kaiyala, K., Porte, D., Jr., Kahn, S. E., and Schwartz, W. M. (1996). Insulin transport from plasma into the CNS by dexamethasone in dogs. Diabetes 45:86–90.

    Google Scholar 

  • Baura, G. D., Foster, D. M., Porte, D., Jr., Kahn, S. E., Begman, R. N., Cobelli, C., and Schwartz, M. W. (1993). Saturable transport of insulin from plasma into the CNS of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J. Clin. Invest. 92:1824–1830.

    Google Scholar 

  • Beck, B. (1999). Quantitative and macronutrient-related regulation of hypothalamic NPY, galanin and neurotensin. In Berthoud, H. R., and Seeley, R. J. (eds.), Neural and Metabolic Control of Macronutrient Intake, CRC Press, Boca Raton, FL, Ch. 29, pp. 455–464.

    Google Scholar 

  • Bennett, R. G., Duckworth, W. C., and Hamel, F. G. (2000). Degradation of amylin by insulin-degrading enzyme. J. Biol. Chem. 275:36621–36625.

    Google Scholar 

  • Bergonzelli, G. E., Pralong, F. P., Glauser, M., Cavadas, C., Grouzmann, E., and Gaillard, R. C. (2001). Interplay between galanin and leptin in the hypothalamic control of feeding via CRH and neuropeptide Y. Diabetes 50:2666–2672.

    Google Scholar 

  • Berthoud, H. R. (1999). An overview of neural pathways and networks involved in the control of food intake and selection. In Berthoud, H. R., and Seeley, R. J. (eds.), Neural and Metabolic Control of Macronutrient Intake, CRC Press, Boca Raton, FL, Ch. 24, pp. 361–388.

    Google Scholar 

  • Biessels, G. J., Van der Heide, L. P., Kamal, A., Bleys, R. L. A., and Gispen, W. H. (2002). Ageing and diabetes: Implications for brain function. Eur. J. Pharmacol. 441:1–14.

    Google Scholar 

  • Blundell, J. E. (1984). Serotonin and appetite. Neuropharmacology 23:1537–1551.

    Google Scholar 

  • Boyd, F. T. Jr., Clarke, D. W., and Raizada, M. K. (1986). Insulin inhibits specific norepinephrine uptake in neuronal cultures from rat brain. Brain Res. 398:1–5.

    Google Scholar 

  • Boyd, F. T., Jr., and Raizada, M. K. (1983). Effects of insulin and tunamycin on neuronal insulin receptors in culture. Am. J. Physiol. 245:C283-C287.

    Google Scholar 

  • Bruning, J. C., Gautam, D., Burks, D. J., Gillette, J., Schubert, M., Orban, P. C., et al. (2000). Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125.

    Google Scholar 

  • Bruning, J. C., Michael, M. D., Winnay, J. N., Hayashi, T., Horsch, D., Accili, D., et al. (1998). A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell. 2:559–569.

    Google Scholar 

  • Calapai, G., Corica, F., Corsonello, A., Sautebin, L., DiRosa, M., Campio, G. M., et al. (1999). Leptin increases serotonin turnover by inhibition of brain nitric oxide synthesis. J. Clin. Invest. 104:975–982.

    Google Scholar 

  • Carvalheira, J. B. C., Siloto, R. M. P., Ignacchitti, I., Brenelli, S. L., Carvalho, C. R. O., Leite, A., et al. (2001). Insulin modulates leptin-induced STAT3 activation in rat hypothalamus. FEBS Lett. 500:119–124.

    Google Scholar 

  • Chavez, M., Riedy, C. A., Van Dijk, G. D., and Woods S. C. (1996). Central insulin and macronutrient intake in the rat. Am. J. Physiol. 271:R727-R731

    Google Scholar 

  • Chavez, M., Seeley, R. J., Green, P. K., Wilkinson, C. W., Schwartz, M. W., and Woods, S. C. (1997). Adrenalectomy increases sensitivity to central insulin. Physiol. Behav. 62:631–634.

    Google Scholar 

  • Cheung, C. C., Thornton, J. E., Kuijper, J. L., Weigle, D. S., Clifton, D. K., and Steiner, R. A. (1997). Leptin is a metabolic gate for the onset of puberty in the female rat. Endocrinology 138:855–858.

    Google Scholar 

  • Cheung, C. C., Thornton, J. E., Nurani, S. D., Clifton, D. K., and Steiner, R. A. (2001). A reassessment of leptin's role in triggering the onset of puberty in the rat and mouse. Neuroendocrinology 74:12–21.

    Google Scholar 

  • Choeiri, C., Staines, W., and Messier, C. (2002). Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience 111:19–34.

    Google Scholar 

  • Clarke, D. W., Mudd, L., Boyd, F. T., Fields, M., and Raizada, M. K. (1986). Insulin is released from rat brain neuronal cells in culture. J. Neurochem. 47:831–836.

    Google Scholar 

  • Craft, S., Asthana, S., Newcomer, J. W., Wilkinson, C. W., Matos, I. T., Baker, L. D., et al. (1999). Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry. 56:1135–1140.

    Google Scholar 

  • Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, J., et al. (1996). Memory improvement following induced hyperinsulinemia in Alzheimer's disease. Neurobiol. Aging. 17:123–130.

    Google Scholar 

  • Craft, S., Peskind, E., Schwartz, M. W., Schellenberg, G. D., Raskind, M., and Porte, D., Jr. (1998). Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: Relationship to severity of dementia and apolipoprotein E genotype. Neurology 50:164–168.

    Google Scholar 

  • Cunningham, M. J., Clifton, D. K., and Steiner, R. A. (1999). Leptin's actions on the reproductive axis: perspectives and mechanisms. Biol. Reprod. 60:216–222.

    Google Scholar 

  • Dallman, M. F., Akana, S. F., Strack, A. M., Hanson, E. S., and Sebastian, R. J. (1995). The neural network that regulates energy balance in responsive to glucocorticoids and insulin, also regulates HPA axis responsivity at a site proximal to CRF neurons. Ann. N. Y. Acad. Sci. 771:730–742.

    Google Scholar 

  • Dallman, M. F., Strack, A. M., Akana, S. F., Bradbury, M. J., Hanson, E. S., Scribner, K. A., and Smith, M. (1993). Feast and famine: Critical role of glucocorticoids with insulin in daily energy flow. Front. Neuroendocrinol. 14:303–347.

    Google Scholar 

  • Dallongeville, J., Hecquet, B., Lebel, P., Edme, J. L., Le Fur, C., Fruchart, J. C., Auwerx, J., and Romon, M. (1998). Short term response of circulating leptin to feeding and fasting in man: influence of circadian cycle. Int. J. Obes. Relat. Metab. Disord. 22:728–733.

    Google Scholar 

  • Devaskar, S. U., Giddins, S. J., Rajakumar, P. A., Canaghi, L. R., Menon, R. K., and Zahm, D. S. (1994). Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem. 269:8445–8454.

    Google Scholar 

  • Devaskar, S. U., Singh, B. S., Carnaghi, L. R., Rajakumar, P. A., and Giddings, S. J. (1993). Insulin II gene expression in rat central nervous system. Regul. Pept. 48:55–63.

    Google Scholar 

  • Duffy, K. R., and Pardridge, W. M. (1987). Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420:32–38.

    Google Scholar 

  • Feurté, S., Nicolaïdis, S., and Gerozissis, K. (2000). Is the early increase in leptinemia one of the anorectic signals induced by an essential amino acid-deficient diet in rat? Endocrinology 141:3916–3919.

    Google Scholar 

  • Finn, P. D., Cunningham, M. J., Rickard, D. G., Clifton, D. K., and Steiner R. A. (2001). Serotonergic neurons are targets for leptin in the monkey. J. Clin. Endocrinol. Metab. 86:422–426.

    Google Scholar 

  • Forloni, G., Demicheli, F., Giorgi, S., Bendotti, C., and Angeretti, N. (1992). Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: Modulation by interleukin-1. Brain Res. Mol. Brain Res. 16:128–134.

    Google Scholar 

  • Frank, H. J., and Pardridge, W. M. (1983). Insulin binding to brain microvessels. Adv. Metab. Disor. 10:291–302.

    Google Scholar 

  • Frölich, L., Blum-Degen, D., Berstein, H. G., Engelsberger, S., Humrich, J., Laufer, S., et al. (1998). Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. J. Neural. Transm. 105:423–438.

    Google Scholar 

  • Frölich, L., Blum-Degen, D., Hoyer, S., Beckmann, H., and Riederer, P. (1997). Insulin, insulin receptors and IGF-I receptors in post-mortem human brain in ageing and in dementia of Alzheimer type. In Igbal, K., Winblad, B., Nishimura, T., Takeda, M., and Wisniewski, H. M., (eds.), Alzheimer's Disease: Biology, Diagnosis and Theurapeutics, Wiley, New York, pp. 457–465.

  • Gasparini, L., Gouras, G. K., Wang, R., Gross, R. S., Beal, M. F., Greengard, P., and Xu, H. (2001). Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci. 21:2561–2570.

    Google Scholar 

  • Gasparini, L., Netzer, W. J., Greengard, P., and Xu, H. (2002). Does insulin dysfunction play a role in Alzheimer's disease? Trends Pharmacal Sci. 23:288–293.

    Google Scholar 

  • Gavin, J. R., III, Alberti, K. J. M. M., Davidson, M. B., DeFronzo, R. A., Drash, A., Gabbe, S. G., et al. (1997). Report of the expert committee on the diagnosis and the classification of diabetes mellitus. Diabetes Care 20:1183–1197.

    Google Scholar 

  • Gerozissis, K., Orosco, M., Pelé, A., Rouch, C., and Nicolaïdis, S. (1993a). Hypothalamic insulin changes in relation to peripheral insulin infusion and feeding as revealed by microdialysis. In 23rd SFN meeting, Washington, DC, Nov. 1993.

  • Gerozissis, K., Orosco, M., Rouch, C., and Nicolaïdis, S. (1993b). Basal and hyperinsulinemia-induced immunoreactive insulin changes in lean and genetically obese Zucker rats revealed by microdialysis. Brain Res. 611:258–263.

    Google Scholar 

  • Gerozissis, K., Orosco, M., Rouch, C., and Nicolaïdis, S. (1997). Insulin responses to a fat meal in microdialysates and in plasma. Physiol. Behav. 62:767–772.

    Google Scholar 

  • Gerozissis, K., Orosco, M., Rouch, C., and Nicolaïdis, S. (1998). Brain insulin response to feeding in the rat is both macronutrient and area specific. Physiol. Behav. 65:271–275.

    Google Scholar 

  • Gerozissis, K., Rouch, C., Lemierre, S., Nicolaïdis, S., and Orosco, M. (2001). A potential role of central insulin in learning and memory related to feeding. Cell. Mol. Neurobiol. 21:389–401.

    Google Scholar 

  • Gerozissis, K., Rouch, C., Lemierre, S., Meile, M. J., and Orosco, M. (2002). Brain insulin and cognition related to feeding. In 5th ICN, Aug.–Sept. 2000, Bristol, UK.

  • Gilon, P., and Henquin, J. C. (2001). Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr. Rev. 22:565–604.

    Google Scholar 

  • Giorgino, F., Almahfouz, A., Goodyear, L. J., and Smith, R. J. (1993). Glucocorticoid regulation of insulin receptor and substrate IRI-1 tyrosine phosphorylation in rat skeletal muscle in vivo. J. Clin. Invest. 91:2020–2030.

    Google Scholar 

  • Gispen, W. H., and Biessels, G. J. (2000). Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci. 23:542–549

    Google Scholar 

  • Greenwood, C. E., and Winocur, G. (2001). Glucose treatment reduces memory deficits in young adult rats fed high-fat diets. Neurobiol. Learn. Mem. 75:179–189.

    Google Scholar 

  • Grodsky, G. M. (1975).The kinetics of insulin release. In Hasselblatt, A., and Bruchhausen, F. V., (eds.), Insulin, Part 2, Springer-Verlag, New York, pp. 1–16.

    Google Scholar 

  • Hamel, F. G., Bennett, R. G., and Duckworth, W. C. (1998). Regulation of multicatalytic enzyme activity by insulin and the insulin-degrading enzyme. Endocrinology 139:4061–4066.

    Google Scholar 

  • Harvey, J., McKenna, F., Herson, P. S., Spanswick, D., and Ashford, M. L. (1997). Leptin activates ATP-sensitive potassium channels in the rat insulin-secreting cell line, CRI-G1. J Physiol. 504:527–535.

    Google Scholar 

  • Harvey, J., McKay, N. G., Walker, K. S., Van der Kaay, J., Downes, C. P., and Ashford, M. L. (2000). Essential role of phosphoinositide 3-kinase in leptin-induced-K(ATP) channel activation in the rat CRI-G1 insulinoma cell line. J. Biol. Chem. 275:4660–4669.

    Google Scholar 

  • Havel, P. J. (2001). Peripheral signals conveying metabolic information to the brain: Short-term and long-term regulation of food intake and energy homeostasis. Exp. Biol. Med. 226:963–977.

    Google Scholar 

  • Havrankova, J. M., Roth, J., and Brownstein, M. (1979). Concentrations of insulin and of insulin receptors in the brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated rodents. J. Clin. Invest. 64:636–642.

    Google Scholar 

  • Havrankova, J. M., Schmechel, D., Roth, J., and Brownstein, M. (1978). Identification of insulin in rat brain. Proc. Nat. Acad. Sci. 75:5737–5741.

    Google Scholar 

  • Hedeskov, C. J. (1980). Mechanism of glucose-induced insulin secretion. Physiol. Rev. 60:442–509.

    Google Scholar 

  • Heidenreich, K. A., and Brandenburg, D. (1986). Oligosaccharide heterogeneity of insulin receptors. Comparison of N-linked glycosilation of insulin receptors in adipocytes and brain. Endocrinology 118:1835–1842.

    Google Scholar 

  • Heidenreich, K. A., Zahniser, N. R., Berhanu, P., Brandenburg, D., and Olefsky, J. M. (1983). Structural differences between insulin receptors in the brain and peripheral target tissues. J. Biol. Chem. 258:8527–8530.

    Google Scholar 

  • Henneberg, N., and Hoyer, S. (1994). Short-term or long-term intracerebro-ventricular (i.c.v.) infusion of insulin exhibits a discrete anabolic effect on cerebral energy metabolism in the rat. Neurosci. Lett. 175:153–156.

    Google Scholar 

  • Henneberg, N., and Hoyer, S. (1995). Desensitization of the neuronal insulin receptor: A new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? Arch. Gerontol. Geriatr. 21:63–74.

    Google Scholar 

  • Henquin, J. C. (2000). Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760.

    Google Scholar 

  • Henquin, J. C., Ishiyama, N., Nenquin, M., Ravier, M. A., and Jonas, J. C. (2002). Signals and pools underlying biphasic insulin secretion. Diabetes 51(Suppl. 1):S60-S67.

    Google Scholar 

  • Hökfelt, T., Broberger, C., Xu, Z. Q. D., Sergeyev, V., Ubink, R., and Diez, M. (2000). Neuropeptides–An overview. Neuropharmacology 39:1337–1356.

    Google Scholar 

  • Holden, R. J., Pakula, I. S., and Mooney, A. (1999). The role of brain insulin in the neurophysiology of serious mental disorders: Review. Med. Hypotheses 52:193–200.

    Google Scholar 

  • Howel, S. L. (1997). The biosynthesis and secretion of insulin. In Pickup, J. C., and Williams, G. (eds.), Textbook of Diabetes, 2nd ed. Vol. I, Ch. 8, pp. 1–14.

  • Hoyer, S. (1998). Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J. Neural. Transm. 105:415–422.

    Google Scholar 

  • Hoyer, S. (2002). The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: An update. J. Neural.Transm. 109:341–360

    Google Scholar 

  • Hoyer, S., Prem, L., Sorbi, S., and Amaducci, L. (1993). Stimulation of glycolytic key enzymes in cerebral cortex by insulin. Neuro. Rep. 4:991–993.

    Google Scholar 

  • Jones, E. G., Choi, D. W., and Mendell, L. M. (1999, March). Insulin, the brain and memory. Neurosci. Newslett briefing.

  • Jonas, E., Knox, R. J., Smith, T. C., Wayne, N. L., Connor, J. A., and Kaczmarek, L. K. (1997). Regulation by insulin of a unique neuronal Ca2+ pool and of neuropeptide secretion. Nature 385:343–346.

    Google Scholar 

  • Kadekaro, M., Ito, M., Gross, P. M. (1998). Local cerebral glucose utilization is increased in acutely adrenalectomized rats. Neuroendocrinology 47:329–334.

    Google Scholar 

  • Kahn, C. R., White, M. F., Shoelson, S. E., Backer, J. M., Araki, E., Cheatham B., et al. (1993). The insulin receptor and its substrate: molecular determinants of early events in insulin action. Recent Prog. Horm. Res. 48:291–339.

    Google Scholar 

  • Kaiyala, K. J., Prigeon, R. L., Kahn, S. E., Woods, S. C., and Schwartz, M. W. (2000). Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes 49:1525–1533.

    Google Scholar 

  • Kalra, S. P., Dube, M. G., Fournier, A., and Kalra, P. S. (1991). Structure-function analysis of stimulation of food intake by neuropeptide Y: Effects of receptor agonists. Physiol. Behav. 50:5–9.

    Google Scholar 

  • Kalra, S. P., Dube, M. G., Pu, S., Xu, B., Horvath, T. L., and Kalra, P. S. (1999). Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 20:68–100.

    Google Scholar 

  • Kneussel, M. (2002). Dynamic regulation of GABA(A) receptors at synaptic sites. Brain Res. Rev. 39:74–83.

    Google Scholar 

  • Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., and Kangawa, K. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Google Scholar 

  • Kulkarni, R. N., Bruning, J. C., Winnay, J. N., Postic, C., Magnuson, M. A., and Kahn, C. R. (1999). Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339.

    Google Scholar 

  • Leibowitz, S. F., and Shor-Posner, G. (1986). Brain serotonin and eating behavior. Appetite 7(Suppl.):1–14.

    Google Scholar 

  • Leibson, C. L., Rocca, W. A., Hanson, V. A., Cha, R., Kokmen, E., O'Brien, P. C., and Palumbo, P. J. (1997). The risk of dementia among persons with diabetes mellitus: A population-based cohort study. Ann. N. Y. Acad. Sci. 826:422–427.

    Google Scholar 

  • Le Roith, D., Rojeski, M., and Roth, J. (1988). Insulin receptors in brain and other tissues: Similarities and differences. Neurochem. Int. 12:419–423.

    Google Scholar 

  • Levin, B. E., Dunn-Meynell, A. A., and Routh, V. H. (1999). Brain glucose sensing and body energy homeostasis: Role in obesity and diabetes. Am. J. Physiol. 45:R1223-R1231.

    Google Scholar 

  • Livingstone, C., Lyall, H., and Gould, G. W. (1995). Hypothalamic GLUT4 expression: A glucose-and insulin-sensing mechanism? Mol. Cell. Endocrinol. 107:67–70.

    Google Scholar 

  • Ludwig, D. S., Tritos, N. A., Mastaitis, J. W., Kulkarni, R., Kokkotou, E., Elmquist, J., et al. (2001). Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Invest. 107:379–386.

    Google Scholar 

  • Magarinos, A. M., Jain, K., Blount, E. D., Reagan, L., Smith, B. H., and McEwen, B. S. (2001). Peritoneal implantation of macroencapsulated porcine pancreatic islets in diabetic rats ameliorates severe hyperglycemia and prevents retraction and simplification of hippocampal dendrites. Brain Res. 902:282–287.

    Google Scholar 

  • Malaisse, W. J. (1996). Metabolic signaling of insulin secretion. Diabetes Rev. 4:145–158

    Google Scholar 

  • Marks, J. L., Madisson, J., and Eastman, C. J. (1998). Intracerebroventricular neuropeptide Y acutely influences glucose metabolism and insulin sensitivity in the rat. J. Neurochem. 50:774–781.

    Google Scholar 

  • McGowan, M. K., Andrews, K. M., Kelly, J., and Grossman, S. P. (1990). Effects of chronic intrahypothalamic infusion of insulin on food intake and diurnal meal patterning in the rat. Behav. Neurosci. 104:371–383.

    Google Scholar 

  • McNay, E. C., Fries, T. M., and Gold, P. E. (2000). Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl. Acad. Sci. U. S. A. 97:2881–2885.

    Google Scholar 

  • McNay, E. C., McCarthy, R. C., and Gold, P. E. (2001). Fluctuations in brain glucose concentration during behavioral testing: Dissociations between brain areas and between brain and blood. Neurobiol. Learn. Mem. 75:325–337.

    Google Scholar 

  • Messier, C., and Gagnon, M. (1996). Glucose regulation and cognitive functions: Relation to Alzheimer's disease and diabetes. Behav. Brain Res. 75:1–11.

    Google Scholar 

  • Messier, C., and Gagnon, M. (2000). Glucose regulation and brain aging. J. Nutr. Health Aging 4:208–213.

    Google Scholar 

  • Miles, W. R., and Root, H. F. (1922). Psychologic tests applied to diabetes patients. Arch. Intern. Med. 30:767–777.

    Google Scholar 

  • Morley, J. E., and Levine, A. S. (1982). Corticotrophin releasing factor, grooming and ingestive behavior. Life Sci. 31:1459–1464.

    Google Scholar 

  • Murakami, N., Hayashida, T., Kuroiwa, T., Nakahara, K., Ida, T., Mondal, M. S., Nakazato, M., Kojima, M., and Kangawa, K. (2002). Role for central ghrelin in food intake and secretion profile of stomach ghrelin in rats. J. Endocrinol. 174:283–288.

    Google Scholar 

  • Murata, M., Okimura, Y., Iida, K., Matsumoto, M., Sowa, H., Kaji, H., Kojima, M., Kangawa, K., and Chihara K. (2002). Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J. Biol. Chem. 277:5667–5674.

    Google Scholar 

  • Nicolaïdis, S. (1978). Mécanisme nerveux de l'équilibre énergétique. Journées Annuelles de Diabétologie de l'Hôtel Dieu de Paris. 1:152–156.

    Google Scholar 

  • Obici, S., Feng, Z., Karkanias, G., Baskin, D. G., and Rossetti, L. (2002a). Decreasing hypothalamic insulin receptors cause hyperphagia and insulin resistance in rats. Nat. Neurosci. 5:566–572.

    Google Scholar 

  • Obici, S., Feng, Z., Morgan, K., Stein, D., Karkanias, G., and Rossetti, L. (2002b). Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51:271–275.

    Google Scholar 

  • Obici, S., Feng, Z., Tan, J., Liu, L., Karkanias, G., and Rossetti, L. (2001). Central melanocortin receptors regulate insulin action. J. Clin. Invest. 108:1079–1085.

    Google Scholar 

  • Oomura, Y., and Kita, H. (1981). Insulin acting as a modulator of feeding through the hypothalamus. Diabetologia 20(Suppl.): 290–298.

    Google Scholar 

  • Orosco, M., and Gerozissis, K. (2001). Macronutrient-induced cascade of events leading to parallel changes in hypothalamic serotonin and insulin. Neurosci. Biobehav. Rev. 25:167–174.

    Google Scholar 

  • Orosco, M., Gerozissis, K., and Nicolaïdis, S. (1999). Effects of pure macronutrient diets on 5-HT release in the rat hypothalamus: Relationship to insulin secretion and possible mechanism for feedback control of fat and carbohydrate ingestion. In Berthoud, H. R., and Seeley, R. J. (eds.), Neural and Metabolic Control of Macronutrient Intake, CRC Press, Boca Raton, FL, Ch. 28, pp. 447–454.

    Google Scholar 

  • Orosco, M., Gerozissis, K., Rouch, C., and Nicolaïdis, S. (1995). Feeding-related immunoreactive insulin changes in the PVN-VMH revealed by microdialysis. Brain Res. 671:149–158.

    Google Scholar 

  • Orosco, M., Rouch, C., and Gerozissis, K. (2000). Activation of hypothalamic insulin by serotonin is the primary event of the insulin–serotonin interaction involved in the control of feeding. Brain Res. 872:64–70.

    Google Scholar 

  • Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A., Hofman, A., and Breteler, M. M. (1999). Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53:1937–1942.

    Google Scholar 

  • Pardridge, W. M. (1986). Receptor-mediated peptide transport through the blood-brain barrier. Endocr. Rev. 7:314–330.

    Google Scholar 

  • Pardridge, W. M., Eisenberg, J., and Yang, J. (1985). Human blood–brain barrier insulin receptor. J. Neurochem. 44:1771–1778.

    Google Scholar 

  • Park, C. R. (2001). Cognitive effects of insulin in the CNS. Neurosci. Biobehav. Rev. 25:311–323.

    Google Scholar 

  • Park, C. R., Seeley, R. J., Craft, S., and Woods, S. C. (2000). Intracerebro-ventricular insulin enhances memory in a passive-avoidance task. Physiol. Behav. 68:509–514.

    Google Scholar 

  • Penicaud, L., Leloup, C., Lorsignol, A., Alquier, T., and Guillod, E. (2002). Brain glucose sensing mechanism and glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 5:539–543.

    Google Scholar 

  • Porte, D., Jr., Seeley, R. J., Woods, S. C., Baskin, D. G., Figlewicz, D. P., and Schwartz, M. W. (1998). Obesity, diabetes and the CNS. Diabetologia 41:863–881.

    Google Scholar 

  • Qiu, W. Q., Walsh, D. M., Ye, Z., Vekrellis, K., Zhang, J., and Podlisny, M. B. (1998). Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J. Biol. Chem. 273:32730–32738.

    Google Scholar 

  • Raizada, M. K. (1983). Localization of insulin-like immunoreactivity in the neurons from primary cultures of rat brain. Exp. Cell Res. 143:351–357.

    Google Scholar 

  • Raizada, M. K., Shemer, J., Judkins, J. H., Clarke, D. W., Masters, B. A., and LeRoith, D. (1988). Insulin receptors in the brain: Structural and physiological characterization. Neurochem. Res. 13:297–303.

    Google Scholar 

  • Recio-Pinto, E., Lang, F. F., and Ishii, D. N. (1984). Insulin and insulin-like growth factor II permit nerve growth factor binding and the neurit formation response in cultured human neuroblastoma cells. Proc. Nat. Acad. Sci. U.S.A. 81:2562–2566.

    Google Scholar 

  • Romon, M., Lebel, P., Velly, C., Marecaux, N., Fruchart, J. C., and Dallongeville, J. (1999). Leptin response to carbohydrate or fat meal and association with subsequent satiety and energy intake. Am. J. Physiol. 277:E855-E861.

    Google Scholar 

  • Rosenzweig, J. L., Havrankova, J., Lesniak, M. A., Brownstein, M., and Roth, J., (1980). Insulin is ubiquitous in extrapancreatic tissues of rats and humans. Proc. Natl. Acad. Sci. U.S.A. 77:572–576.

    Google Scholar 

  • Rossmanith, W. G., Clifton, D. K., and Steiner, R. A. (1996). Galanin gene expression in hypothalamic GnRH-containing neurons of the rat: A model for autocrine regulation. Horm. Metab. Res. 28:257–266.

    Google Scholar 

  • Ryan, C. M., and Geckle, M. O. (2000). Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes. Diabetes Care 23:1486–1493.

    Google Scholar 

  • Sahu, A., and Zhao, A. Z. (2001). Phosphodiesterase 3B (PDE3B)-cyclic AMP pathway: A novel mechanism of leptin signaling in the hypothalamus. In 31st SFN, San Diego, CA, Nov. 2001.

  • Santos, M. S., Pereira, E. M., and Carvaho, A. P. (1999). Stimulation of immunoreactive insulin release by glucose in rat brain synaptosomes. Neurochem. Res. 24:33–36.

    Google Scholar 

  • Schechter, R. (1998). Effects of brain endogenous insulin on neurofilament and MAPK in fetal rat neuron cell cultures. Brain Res. 808:270–278.

    Google Scholar 

  • Schechter, R., and Abboud, M. (2001). Neuronal synthesized insulin roles on neural differentiation within fetal rat neuron cell cultures. Dev. Brain Res. 127: 41–49.

    Google Scholar 

  • Schechter, R., Abboud, M., and Johnson, G. (1999). Brain endogenous insulin effects on neurite growth within fetal rat neuron cell cultures. Brain Res. Dev. Brain Res. 116:159–167.

    Google Scholar 

  • Schechter, R., Beju, D., Gaffney, T., Schaefer, F., and Whetsell, L. (1996). Preproinsulin I and II mRNAs and insulin electron microscopic immunoreaction are present within the rat fetal nervous system. Brain Res. 736:16–27.

    Google Scholar 

  • Schechter, R., Sadiq, H. F., and Devaskar, S. U. (1990). Insulin and insulin mRNA are detected in neuronal cell cultures maintained in an insulin-free/serum-free medium. J. Histochem. Cytochem. 38:829–836.

    Google Scholar 

  • Schechter, R., Whitmire, J., Wheet, G. S., Beju, D., Jackson, K. W., Harlow, R., and Gavin, J. R., III (1994). Immunohistochemical and in situ hybridization study of an insulin-like substance in fetal neuron cell cultures. Brain Res. 636:9–27.

    Google Scholar 

  • Schulingkamp, R. J., Pagano, T. C., Hung, D., and Raffa, R. B. (2000). Insulin receptors and insulin action in the brain: Review and clinical implications. Neurosci. Biobehav. Rev. 24:855–872.

    Google Scholar 

  • Schwartz, M. W. (2000). Biomedicine. Staying slim with insulin in mind. Science 289:2066–2067.

    Google Scholar 

  • Schwartz, M. W. (2001). Progress in the search for neuronal mechanisms coupling type 2 diabetes to obesity. J. Clin. Invest. 108:963–964.

    Google Scholar 

  • Schwartz, M. W., Bergman, R. N., Kahn, S. E., Taborsky, G. J., Jr., Fisher, L. D., Sipols, A. J., et al. (1991). Evidence for entry of plasma insulin into cerebrospinal fluid through an intermediate compartment in dogs. Quantitative aspects and implications for transport. J. Clin. Invest. 88:1272–1281.

    Google Scholar 

  • Schwartz, M. W., Figlewicz, D. P., Baskin, D. G., Woods, S. C., and Porte, D., Jr. (1992a). Insulin in the brain: A hormonal regulator of energy balance. Endocr. Rev. 13:387–414.

    Google Scholar 

  • Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P., and Baskin, D. G. (1996). Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98:1101–1106.

    Google Scholar 

  • Schwartz, M. W., Sipols, A. J., Marks, J. L., Sanacora, G., White, J. D., Scheurink, A. (1992b). Inhibition of hypothalamic NPY gene expression by insulin. Endocrinology 130:3608–3616.

    Google Scholar 

  • Schwartz, M. W., Woods, S. C., Porte, D., Jr., Seeley, R. J., and Baskin, D. G. (2000). CNS control of food intake. Nature 404:661–671.

    Google Scholar 

  • Seeley, R. J., Yagaloff, K. A., Fisher, S. L., Burn, P., Thiele, T. E., van Dijk, G.(1997). Expression by insulin. Endocrinology 130:3608–3616.

    Google Scholar 

  • Silver, I. A., and Erecinska, M. (1998). Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 79:1737–1745.

    Google Scholar 

  • Simansky, K. J. (1996). Serotonergic control of the organization of feeding and satiety. Behav. Brain Res. 73:37–42.

    Google Scholar 

  • Sipols, A. J., Baskin, D. G., and Schwartz, M. W. (1995). Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic gene expression. Diabetes 249:546–549.

    Google Scholar 

  • Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D., and Ashford, M. L. (1997). Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 90:521–525.

    Google Scholar 

  • Snyder, E. Y., and Kim, S. V. (1980). Insulin: Is it a nerve survival factor? Brain Res. 196:565–574.

    Google Scholar 

  • Sokoloff, L. (1977). Relation between physiological function and energy metabolism in the central nervous system. J Neurochem. 29:13–26.

    Google Scholar 

  • Steiner, R. A., Hohmann, J. G., Holmes, A. N., Wrenn, C. C., Cadd, G., Jureus, A., et al. (2001). Galanin transgenic mice display cognitive and neurochemical deficits characteristic of Alzheimer's disease. Proc. Nat. Acad. Sci. 98:4184–4189.

    Google Scholar 

  • Stewart, R., and Liolitsa, D. (1999). Type 2 diabetes mellitus, cognitive impairement and dementia. Diabet. Med. 16:93–112.

    Google Scholar 

  • Strack, A. M., Sebastian, R. J., Schwartz, M. W., and Dallman, M. F. (1995). Glucocorticoids and insulin: Reciprocal signals for energy balance. Am. J. Physiol. 268:R142-R149.

    Google Scholar 

  • Strubbe, J. H., and Mein, C. G. (1977). Increased feeding in response to bilateral injection of insulin antibodies in the VMH. Physiol. Behav. 19:309–313.

    Google Scholar 

  • Swaab, D. F., Lucassen, P. J., Salehi, A., Scherder, E. J. A., van Someren, E. J. W., and Verwer, R. W. H. (1998). Reduced neuronal activity and reactivation in Alzheimer's disease. Prog. Brain Res. 117:343–377.

    Google Scholar 

  • Szanto, I., and Kahn, C. R. (2000). Selective interaction between leptin and insulin signaling pathways in a hepatic cell line. Proc. Natl. Acad. Sci. U.S.A. 97:2355–2360.

    Google Scholar 

  • Tataranni, P. A., Gautier, J. F., Chen, K., Uecker, A., Bandy, D., and Salbe, A. D. (1999). Neuro-anatomical correlates of hunger and satiation in humans using positron emission tomography. Proc. Nat. Acad. Sci. U.S.A. 96:4569–4574.

    Google Scholar 

  • Tempel, D. L., McEwen, B. S., and Leibowitz, S. F. (1992). Effects of adrenal steroid agonists on food intake and macronutrient selection. Physiol. Behav. 52:1161–1166.

    Google Scholar 

  • Tracy, A. L., Jarrard, L. E., and Davidson, T. L. (2001). The hippocampus and motivation revisited: Appetite and activity. Behav. Brain Res. 127:13–23.

    Google Scholar 

  • Unger, J. W., Livingston, J. N., and Moss, A. M. (1991). Insulin receptors in the central nervous system: Localization, signalling mechanisms and functional aspects. Prog. Neurobiol. 36: 343–362.

    Google Scholar 

  • Van Houten, M., Posner, B. I., Kopriwa, B. M., and Brawer, J. R., (1979). Insulin binding sites in the rat brain: In vivo localization to the circumventricular organs by quantitative autoradiography. Endocrinology 105:666–673.

    Google Scholar 

  • Van Houten, M., Posner, B. I., Kopriwa, B. M., and Brawer, J. R. (1980). Insulin binding sites localized to nerve terminals in rat median eminence and arcuate nucleus. Science 207:1081–1083

    Google Scholar 

  • Vannucci, S. (1994). Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain. J. Neurochem. 62:240–246.

    Google Scholar 

  • Vannucci, S. J., Maher, F., and Simpson, I. A. (1991). Glucose transporter proteins in brain: Delivery of glucose to neurons and glia. Glia 21:2–21.

    Google Scholar 

  • Vekrellis, K., Ye, Z., Qiu, W. Q., Walsh, D., Hartley, D., Chesneau, V., Rosner, M. R., and Selkoe, D. J. (2000). Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J. Neurosci. 20:(1) 657–665

    Google Scholar 

  • Wallum, B. J., Taborsky, G. J., Jr., Porte, D., Jr., Figlewicz, D. P., Jacobson, L., Beard, J. C., et al. (1987). Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J. Clin. Endocrinol. Metab. 64:190–194.

    Google Scholar 

  • Wan, Q., Xiong, Z. G., Man, H. Y., Ackerley, C. A., Braunton, J., Lu, W. Y., et al. (1997). Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388:686–690.

    Google Scholar 

  • Watt, J. A., Pike, C. J., Walencewicz-Wasserman, A. J., and Cotman, C. W. (1994). Ultrastructural analysis of beta-amyloid-induced apoptosis in cultured hippocampal neurons. Brain Res. 661:147–156.

    Google Scholar 

  • Wei, L., Matsumoto, H., and Rhoads, D. E. (1990). Release of immunoreactive insulin from rat brain synaptosomes under depolarizing conditions. J. Neurochem. 54:1661–1665.

    Google Scholar 

  • Weindl, A., and Sofroniew, M. V. (1981). Relation of neuropeptides to mammalian circumventricular organs. Adv. Biochem. Psychopharmacol. 28:303–320.

    Google Scholar 

  • Wickelgren, I. (1998). Tracking insulin to the mind. Science 280:517–519.

    Google Scholar 

  • Williams, G., Bing, C., Cai, X. J., Harrold, J. A., King, J. P., and Liu, X. H. (2001). The hypothalamus and the control of energy homeostasis. Different circuits, different purpeses. Physiol. Behav. 74:683–701.

    Google Scholar 

  • Woods, S. C., Lotter, E. C., McKay, D., and Porte, D., Jr. (1979). Chronic intracerebroventricular infusion of insulin reduces food intake and body weight in baboons. Nature 282:503–505.

    Google Scholar 

  • Woods, S. C., Schwartz, M. W., Baskin, D. G., and Seeley, R. J. (2000). Food intake and the regulation of body weight. Annu Rev Psychol. 51:255–277.

    Google Scholar 

  • Woods, S. C., Seeley, R. J., Porte, D., Jr. and Schwartz, M. W. (1998). Signals that regulate food intake and energy homeostasis. Science 280:1378–1383.

    Google Scholar 

  • Wozniak, M., Rydzewski, B., Baker, S. P., and Raizada, M. K. (1993). The cellular and physiological actions of insulin in the central nervous system. Neurochem. Int. 22:1–10.

    Google Scholar 

  • Wree, A. (1991). Local cerebral glucose utilization in the brain of old learning impaired rats. Histochemistry 95: 591–603.

    Google Scholar 

  • Yalow, R. S., and Eng, J. (1983). Insulin in the central nervous system. Adv. Metab. Disord. 10:341–354.

    Google Scholar 

  • Yang, X.-J., Kow, L.-M., Funabashi, T., and Mobbs, C. V. (1999). Hypothalamic glucose sensor sinsor-similarities to and differences from pancreatic beta-cell mechanisms. Diabetes 48:1763–1772.

    Google Scholar 

  • Yoshihara, T., Honma, S., and Honma, K. (1996). Effects of restricted daily feeding on neuropeptide Y release in the rat paraventricular nucleus. Am. J. Physiol. 70:E589-E595.

    Google Scholar 

  • Young, W. S., III (1986). Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 8:93–97.

    Google Scholar 

  • Zahm, D. S. (1994). Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem. 269:8445–8454.

    Google Scholar 

  • Zahniser, N. R., Goens, M. B., Hanaway, P. J., and Vinych, J. V. (1984). Characterization and regulation of insulin receptors in rat brain. J. Neurochem. 42:1354–1362.

    Google Scholar 

  • Zaia, A., and Piantanelli, L. (1996). Insulin receptors in the brain: Age-related modifications. In Vidik, A., and Hofecker, G. (eds.), Vitality, Mortality and Aging, Universitatsverlag, pp. 147–158.

  • Zaia, A., and Piantanelli, L. (2000). Insulin receptors in the brain cortex of aging mice. Mech. Ageing Dev. 113:227–232.

    Google Scholar 

  • Zhao, W. Q., and Alkon, D. C. (2001). Role of insulin and insulin receptors in learning and memory. Mol. Cell. Endocrinol. 177:125–134.

    Google Scholar 

  • Zhao, W. Q., and Alkon, D. C. (2002). Roles of the brain insulin receptor in spatial learning. In 22nd EWCBR Meeting, March 2002, ARC 1800, France.

  • Zhao, W. Q., Chen, H., Xu, H., Moore, E., Meiri, N., Quon, M. J., and Alkon, D. C. (1999). Brain insulin receptors and spatial memory. J. Biol. Chem. 274:34893–34902.

    Google Scholar 

  • Zhao, W. Q., Dou, J. T., Liu, Q. W., and Alkon, D. C. (2002). Evidence for locally produced insulin in the adult rat brain as a neuroactive peptide. In Nov. 2002. Orlando, FL, 32nd SFN meeting.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerozissis, K. Brain Insulin: Regulation, Mechanisms of Action and Functions. Cell Mol Neurobiol 23, 1–25 (2003). https://doi.org/10.1023/A:1022598900246

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022598900246

Navigation