Skip to main content
Log in

The Photophysics of β-Tyrosine and Its Simple Derivatives

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Synthesis and photophysical studies of (O-methyl)-β-tyrosine (β-tyrosine; an analogue of tyrosine, in which the amino group is moved from the α- to the β-carbon, closer to the phenol ring) and its derivatives with a blocked amino and/or carboxyl group were performed to explain the nature of the fluorescence of tyrosine derived analogues. All β-tyrosine derivatives, except Ac-βTyr(Me), displayed the monoexponential fluorescence decay. The biexponential fluorescence decay observed for Ac-βTyr(Me) is assumed to be the result of the presence of two low-energy conformations (extended and with an intramolecular hydrogen bond). Higher quenching of the fluorescence of β-tyrosine derivatives by the N-acetyl group than by the N-methylamide group moved farther was found, contrary to the data found for the respective derivatives of natural tyrosine. The obtained photophysical data are discussed with theoretical calculations (AMBER, AM1) on the basis of the rotamer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. R. Laws, J. B. A. Ross, H. R. Wyssbord, J. M. Beechem, L. Brand, and J. C. Sutherland (1986) Biochemistry 25, 599–607.

    Google Scholar 

  2. J. R. Lakowicz, G. Laczko, and I. Gryczyński (1987) Biochemistry 26, 82–90.

    Google Scholar 

  3. P. Gauduchon and P. Wahl (1987) Biophys. Chem. 8, 87–107.

    Google Scholar 

  4. J. B. A. Ross, W. R. Laws, K. W. Rousslang, and H. R. Wyssbord (1992) in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Vol. 3: Biochemical Applications, Plenum Press, New York, pp. 1–63.

    Google Scholar 

  5. D.M. Rayner and A. G. Szabo (1978) Can. J. Chem. 56, 743–745.

    Google Scholar 

  6. A. J. Ruggiero, D. C. Todd, and G. R. Fleming (1990) J. Am. Chem. Soc. 112, 1003–1014.

    Google Scholar 

  7. J. E. Hansen, S. J. Rosental, and G. R. Fleming (1992) J. Phys. Chem. 96, 3034–3040.

    Google Scholar 

  8. I. Saito, H. Sugiyama, A. Yamamoto, S. Muramatsu, and T. Matsuura (1984) J. Am. Chem. Soc. 106, 4286–4287.

    Google Scholar 

  9. E. Gudgin, R. Lopez-Delgado, and W. R. Ware (1983) J. Phys. Chem. 87, 1559–1565.

    Google Scholar 

  10. N. Vekshin, M. Vincent, and J. Gallay (1992) Chem. Phys. Lett. 199, 459–463.

    Google Scholar 

  11. B. Donzel, P. Gauduchon, and P. Wahl (1974) J. Am. Chem. Soc. 96, 801–808.

    Google Scholar 

  12. R. J. Robbins, G. R. Fleming, G. S. Beddard, G. W. Robinson, P. J. Thistlethweit, and G. J. Woolf (1980) J. Am. Chem. Soc. 102, 6271–6279.

    Google Scholar 

  13. A. G. Szabo and D. M. Rayner (1980) J. Am. Chem. Soc. 102, 554–563.

    Google Scholar 

  14. J. B. A. Ross, K. W. Roussland, and L. Brand (1981) Biochemistry 20, 4361–4369.

    Google Scholar 

  15. M. C. Chang, J. W. Petrich, D. B. McDonald, and G. R. Fleming (1983) J. Am. Chem. Soc. 105, 3819–3823.

    Google Scholar 

  16. J. W. Petrich, M. C. Chang, B. D. McDonald, and G. R. Fleming (1983) J. Am. Chem. Soc. 105, 3824–3830.

    Google Scholar 

  17. J. B. A. Ross, H. R. Wyssbord, R. A. Porter, G. Schwartz, C. A. Michaels, and W. R. Laws (1992) Biochemistry 31, 1585–1594.

    Google Scholar 

  18. L. Tilstra, M. C. Sattler, W. R. Cherry, and M. D. Berkley (1990) J. Am. Chem. Soc. 112, 9176–9182.

    Google Scholar 

  19. W. J. Colucci, L. Tilstra, M. C. Sattler, F. R. Fronczek, and M. D. Berkley (1990) J. Am. Chem. Soc. 112, 9182–9190.

    Google Scholar 

  20. J. B. A. Ross, W. R. Laws, A. Buku, J. C. Sutherland, and H. R. Wyssbord (1986) Biochemistry 25, 599–607, 607–612.

    Google Scholar 

  21. J. B. A. Ross, W. R. Laws, J. C. Sutherland, A. Buku, P. G. Panayotis, G. Schwartz, and H. R. Wyssbord (1986) Photochem. Photobiol. 44, 365–370.

    Google Scholar 

  22. P. B. Contino and W. R. Laws (1991) J. Fluoresc. 1, 5–13.

    Google Scholar 

  23. R. W. Cowgill (1967) Biochim. Biophys. Acta 133, 6–18.

    Google Scholar 

  24. J. E. Tournon, E. Kuntz, and M. A. Bayoumi (1972) Photochem. Photobiol. 16, 425–433.

    Google Scholar 

  25. A. J. Kungl (1992) Biophys. Chem. 45, 41–50.

    Google Scholar 

  26. H. L. Gordon, H. C. Jarrell, A. G. Szabo, and R. L. Somorjai (1992) J. Phys. Chem. 96, 1915–1921.

    Google Scholar 

  27. J. D. James and W. R. Ware (1985) Chem. Phys. Lett. 120, 450–454.

    Google Scholar 

  28. A. Galat (1945) J. Am. Chem. Soc. 67, 1414–1419.

    Google Scholar 

  29. K. Balenovic and D. Fles (1952) J. Org. Chem. 17, 347–352.

    Google Scholar 

  30. G. L. Stahl, R. Walter, and C. W. Smith (1978) J. Org. Chem. 43, 2285–2291.

    Google Scholar 

  31. J. Coste, D. Le Nguyen, and B. Castro (1990) Tetrahedron Lett. 31, 205–209.

    Google Scholar 

  32. J. R. Knutson, J. M. Beechem, and L. Brand (1983) Chem. Phys. Lett. 102, 501–507.

    Google Scholar 

  33. J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson, and L. Brand (1991) in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Vol. 2: Principles, Plenum Press, New York, pp. 241–305.

    Google Scholar 

  34. J. R. Knutson, D. G. Walbridge, and L. Brand (1982) Biochemistry 21, 4671–4679.

    Google Scholar 

  35. K. J. Willis, A. G. Szabo, J. Drew, M. Zuker, and J. M. Ridgeway (1990) Biophys. J. 57, 183–189.

    Google Scholar 

  36. R. F. Chen (1964) Anal Lett. 1, 35–42.

    Google Scholar 

  37. Chem-X Manual, Chemical Design Ltd., Chipping Norton, Oxfordshire OX7 5SR UK.

  38. D. A. Pearlman, D. A. Case, J. Caldwell, G. Seibel, U. C. Singh, P. A. Weiner, and P. A. Kollman (1995) AMBER 4.1, University of California, San Francisco.

    Google Scholar 

  39. Y. N. Vorobjev, A. J. Grant, and H. A. Scheraga (1992) J. Am. Chem. Soc. 114, 3189–3195.

    Google Scholar 

  40. Y. N. Vorobjev, H. A. Scheraga, B. Hitz, and B. Honig (1994) J. Phys. Chem. 98, 10940–10948.

    Google Scholar 

  41. Y. N. Vorobjev, H. A. Scheraga, and B. Honig (1995) J. Phys. Chem. 99, 7180–7187.

    Google Scholar 

  42. A. Klamt and G. J. Schüurmann (1993) J. Chem. Soc. Perkin Trans. 2, 799–805.

    Google Scholar 

  43. J. K. Lee, R. T. Ross, S. Thampi, and S. Leurgane (1992) J. Phys. Chem. 96, 9158–9162.

    Google Scholar 

  44. W. Wiczk, K. Stachowiak, C. Czaplewski, L. Lankiewicz, and A. Michniewicz (1997) J. Photochem. Photobiol. A Chem. 102, 189–195.

    Google Scholar 

  45. R. W. Cowgill (1976) in R. F. Chen and H. Edekhoch (Eds.), Biochemical Fluorescence Concepts, Vol. 2, Marcel Deker, New York, Basel, Chap. 9.

    Google Scholar 

  46. T. E. S. Gahms, K. J. Willis, and A. G. Szabo (1995) J. Am. Chem. Soc. 117, 2321–2326.

    Google Scholar 

  47. B. M. P. Huyghens-Despointes, T. M. Klingler, and R. L. Baldwin (1995) Biochemistry 34, 13267–13271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiczk, W., Łankiewicz, L., Czaplewski, C. et al. The Photophysics of β-Tyrosine and Its Simple Derivatives. Journal of Fluorescence 7, 257–266 (1997). https://doi.org/10.1023/A:1022569724149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022569724149

Navigation