Skip to main content
Log in

Different Effects of Opiate Withdrawal on Dopamine Turnover, Uptake, and Release in the Striatum and Nucleus Accumbens

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The purpose of these experiments was to further characterize changes in dopaminergic function that follow withdrawal from chronic opiate treatment. Withdrawal after treatment to a maximum dose of 120 mg/kg of morphine did not alter dopamine concentrations in the substantia nigra, ventral tegmental area, striatum, or nucleus accumbens; but did decrease concentrations of DOPAC and the ratio of DOPAC to dopamine in the lateral striatum and nucleus accumbens. Uptake of tritiated dopamine was diminished for withdrawn slices obtained from the striatum with no effect observed for tissue from the nucleus accumbens. Deficits of in vitro release of tritiated dopamine also occurred following withdrawal, with the nucleus accumbens being sensitive to dependence produced by a lower dose of morphine. In conclusion, opiate withdrawal produces a complex pattern of effects on dopaminergic function that is specific for the striatum and nucleus accumbens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Wise, R., and Bozarth, M. 1987. A psychomotor stimulant theory of addiction. Psych. Review 94:469–492.

    Google Scholar 

  2. Kalivas, P. W., Widerlov, E., Stanley, D., Breese, G., and Prange, A. J., Jr. 1983. Enkephalin action on the mesolimbic system: a dopamine-dependent and dopamine-independent increase in locomotor activity. J. Pharmacol. Exper. Ther. 227:229–237.

    Google Scholar 

  3. Johnson, S. W., and North, R. A. 1992. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neuroscience 12:483–488.

    Google Scholar 

  4. Kopin, I. J. 1994. Neurotransmitters and disorders of the basal ganglia. Pages 899–918, in Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff, P. B. (eds.), Basic Neurochemistry, Raven Press, New York.

    Google Scholar 

  5. Lubetzki, C., Chesselet, M. F., and Glowinski, J. 1982. Modulation of dopamine release in rat striatal slices by delta opiate agonists. J. Pharmacol. Exper. Ther. 222:435–440.

    Google Scholar 

  6. Ahtee, L., and Attila, L. M. J. 1987. Cerebral monoamine neurotransmitters in opioid withdrawal and dependence. Med. Biol. 65:113–119.

    PubMed  Google Scholar 

  7. Westerink, B. H. C., and Kore, J. 1976. Regional rat brain levels of 3,4–dihydroxyphenylacetic acid and homovanillic acid: Concurrent fluorometric measurement and influence of drugs. Europ. J. Pharm. 38:281–291.

    Google Scholar 

  8. Garcia-Sevilla, J. A., Magnusson, T., and Carlsson, A. 1978. Opiate-receptor mediated changes in monoamine synthesis in rat brain. J. Pharm. Pharmacol. 30:613–621.

    PubMed  Google Scholar 

  9. Biggio, G., Casu, M., Corda, M., DiBello, C., and Gessa, G. L. 1978. Stimulation of dopamine synthesis in caudate nucleus by intrastriatal enkephalins and antagonism by naloxone. Science 200:552–554.

    PubMed  Google Scholar 

  10. Spanagel, R., Herz, A., and Shippenberg, T. S. 1990. The effects of opioid peptides on dopamine release in the nucleus accumbens: An in vivo microdialysis study. J. Neurochem. 55:1734–1740.

    PubMed  Google Scholar 

  11. Wood, P. L., Stoland, M., Richard, J. W., and Rackham, A. 1980. Action of mu, kappa, sigma, delta and agonist/antagonist opiates on striatal dopaminergic function. J. Pharmacol. Exper. Ther. 215:697–703.

    Google Scholar 

  12. Pothos, E., Rada, P., Mark, G. P., and Hoebel, B. G. 1991. Dopamine microdialysis in the nucleus accumbens during acute and chronic morphine, naloxone-precipitated withdrawal and clonidine treatment. Brain Res. 566:348–350.

    PubMed  Google Scholar 

  13. Rossetti, Z. L., Melis, F., Carboni, S., and Gessa, G. L. 1992. Dramatic depletion of mesolimbic extracellular dopamine after withdrawal from morphine, alcohol or cocaine: a common neurochemical substrate for drug dependence. Ann. N. Y. Acad. Sci. 654: 513–516.

    PubMed  Google Scholar 

  14. Crippens, D., and Robinson, T. E. 1994. Withdrawal from morphine or amphetamine: different effects on dopamine in the ventral-medial striatum studied with microdialysis. Brain Res. 650:56–62.

    PubMed  Google Scholar 

  15. Acquas, E., and Di Chiara, G. 1992. Depression of mesolimbic dopamine transmission and sensitization to morphine during opiate abstinence. J. Neurochem. 58:1620–1625.

    PubMed  Google Scholar 

  16. Diana, M., Pistis, M., Muntoni, A., and Gessa, G. 1995. Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. J. Pharmacol. Exper. Ther. 272:781–785.

    Google Scholar 

  17. Tien Ril, H. K. G. T., De Vries, T. J., Wardeh, G., Hogenboom, F., Mulder, A. H., and Schoffelmeer, A. N. M. 1993. Long-lasting reciprocal changes in striatal dopamine and acetylcholine release upon morphine withdrawal. Europ. J. Pharm. 235:321–322.

    Google Scholar 

  18. Tjon, G. H. K., De Vries, T. J., Ronken, E., Hogenboom, F., Wardeh, G., Mulder, A. H., and Schoffelmeer, A. N. M. 1994. Repeated and chronic morphine administration causes differential long-lasting changes in dopaminergic neurotransmission in rat striatum without changing its delta and kappa opioid receptor regulation. Europ. J. Pharm. 252:205–212.

    Google Scholar 

  19. Mulder, A., Wardeh, G., Hogenboom, F., and Frankhuyzen A. L. 1984. Kappa and delta opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release. Nature 308:278–280.

    PubMed  Google Scholar 

  20. Werling, L. L., Frattali, A., Portoghese, P. S., Takemori, A. E., and Cox, B. M. 1988. Kappa receptor regulation of dopamine release from striatum and cortex of rats and guinea pigs. J. Pharmacol. Exper. Ther. 246:282–286.

    Google Scholar 

  21. Starr, M. S. 1978. Investigation of possible interactions between substance P and transmitter mechanisms in the substantia nigra and corpus striatum of the rat. J. Pharm. Pharmac. 30:359–363.

    Google Scholar 

  22. Grasing, K., Bills, D., Ghosh, S., Schlussman, S., Patel, A. H., and Woodward, J. J. 1997. Opiate modulation of striatal dopamine and hippocampal norepinephrine release following morphine withdrawal. Neurochem. Res. 22:239–248.

    Article  PubMed  Google Scholar 

  23. Dougherty, K. D., Walsh, T. J., Bailey, S., Schlussman, S., and Grasing, K. 1996. Acquisition of a morris water maze task is impaired during early but not late withdrawal from morphine. Pharmacology, Biochemistry & Behavior 55(2):227–235.

    Google Scholar 

  24. Howes, J. F. 1981. A simple, reliable method for predicting the physical dependence liability of narcotic antagonist analgesics in the rat. Pharmacol. Biochem. Behav. 14:689–692.

    Article  PubMed  Google Scholar 

  25. Akera, T., and Brody, T. M. 1967. The addiction cycle to narcotics in the rat and its relation to catecholamines. Biochem. Pharm. 17:675–688.

    Article  Google Scholar 

  26. Kishioka, S., Nishida, S., Fukunaga, Y., and Yamamoto, H. 1994. Quantitative properties of plasma corticosterone elevation induced by naloxone-precipitated withdrawal in morphine-dependent rats. Japanese J. Pharm. 66:257–263.

    Google Scholar 

  27. Stolerman, I. P., Johnson, C. A., Bunker, P., and Jarvik, M. E. 1975. Weight loss and shock-elicited aggression as indices of morphine abstinence in rats. Psychopharmacologia 45:157–161.

    Article  PubMed  Google Scholar 

  28. Attila, L. M., and Ahtee, L. 1983. Cerebral dopamine and noradrenaline turnover and effects of morphine test dose in rats withdrawn from 20 days' morphine treatment. Med. Biol. 61:249–257.

    PubMed  Google Scholar 

  29. Airio, J., Attila, M., Liekola-Pelho, T., and Ahtee, L. 1994. Withdrawal from repeated morphine sensitises mice to the striatal dopamine release enhancing effect of acute morphine. Naunyn-Schmied. Arch. Pharm. 350:548–554.

    Google Scholar 

  30. Glowinski, J. 1981. Present knowledge on the properties of the mesocortico-frontal dopaminergic neurons. Pages 15–28, in Mathysse, S. (ed.), Psychiatry and the Biology of the Human Brain. Elsevier Publishing Co. Amsterdam.

    Google Scholar 

  31. Roth, R. H., Murrin, C., and Walters, J. R. 1976. Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Europ. J. Pharm. 36:163–171.

    Article  Google Scholar 

  32. Fallon, J. H. 1988. Topographic organization of ascending dopaminergic projections. Pages 1–9, in Kalivas, P. W., and Nemeroff, C. B. (eds.), The Mesocorticolimibic Dopamine System, Annals of the New York Academy of Sciences, New York.

    Google Scholar 

  33. Domesick, V. B. 1988. Neuroanatomical organization of dopamine neurons in the ventral tegmental area. Pages 10–26, in Kalivas, P. W., and Nemeroff, C. B. (eds.), The Mesocorticolimibic Dopamine System, Annals of the New York Academy of Sciences, New York.

    Google Scholar 

  34. Gorbachvskaya, A. I. 1996. Projections of the ventral tegmentum area, formations of the substantia nigra and nuclei of the amygdaloid body on different segments of the caudate nucleus and the accumbens nucleus in dogs. Neurosci. Behav. Physiol. 26:213–219.

    PubMed  Google Scholar 

  35. Illes, P. 1986. Mechanisms of receptor-mediated modulation of transmitter release in noradrenergic, cholinergic and sensory neurons. Neuroscience 17:909–928.

    Article  PubMed  Google Scholar 

  36. Rogawski, M. A., and Barker, J. L. 1983. Effects of 4–aminopyridine on calcium action potentials and calcium current under voltage clamp in spinal neurons. Brain Res. 280:180–185.

    Article  PubMed  Google Scholar 

  37. Attila, L. M. J., and Ahtee, L. 1984. Retardation of cerebral dopamine turnover after withdrawal and its enhanced acceleration by acute morphine administration in rats. Naunyn-Schmied Arch. Pharm. 327:201–207.

    Article  Google Scholar 

  38. Pozzi, L., Trabace, L., Invernizzi, R., and Samanin, R. 1995. Intranigral GR-113808, a selective 5–HT receptor antagonist, attenuates morphine-stimulated dopamine release in the rat striatum. Brain Res. 692:265–268.

    Article  PubMed  Google Scholar 

  39. Johnson, D. W., and Glick, S. D. 1994. Handling and/or saline injections alter basal and morphine-evoked changes in dopamine metabolites in the striatum and nucleus accumbens of rats. Pharmacol. Biochem. Behav. 47:765–768.

    Article  PubMed  Google Scholar 

  40. Fraioli F., Moretti, C., Paolucci, D., Aliccicco, E., Crescenzi, F., and Fortunio, G. 1992. Physical exercise stimulates marked concomitant release of beta-endorphin and adrenocorticotropic hormone. Experientia 36:987–989.

    Google Scholar 

  41. Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., and Zigmond, M. J. 1989. Differential effect of stress on in vivo dopamine release, in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52:1655–1658.

    PubMed  Google Scholar 

  42. Kalivas, P. W., and Duffy, P. 1987. Sensitization to repeatedmorphi ne injection in the rat: possible involvement of A10 dopamine neurons. J. Pharmacol. Exper. Ther. 241:204–212.

    Google Scholar 

  43. Honkanen, A., Piepponen, T. P., and Ahtee, L. 1994. Morphine-stimulated metabolism of striatal and limbic dopamine is dissimilarly sensitized in rats upon withdrawal from chronic morphine treatment. Neurosci. Lett. 180:119–122.

    Article  PubMed  Google Scholar 

  44. Shippenberg, T. S., Bals-Kubik, R., and Herz, A. 1993. Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J. Pharmacol. Exper. Ther. 265:53–59.

    Google Scholar 

  45. Beitner-Johnson, D., Guitart, X., and Nestler, E. J. 1992. Common intracellular actions of chronic morphine and cocaine in dopaminergic brain reward regions. Ann. N. Y. Acad. Sci. 654:70–87.

    PubMed  Google Scholar 

  46. Beitner-Johnson, D., and Nestler, E. J. 1991. Morphine and cocaine exert common chronic action on tyrosine hydroxylase in dopaminergic brain rewards regions. J. Neurochem. 57:344–347.

    PubMed  Google Scholar 

  47. Paulson, P. E., and Robinson, T. E. 1996. Regional differences in the effects of amphetamine withdrawal on dopamine dynamics in the striatum. Neuropsychopharmacology 14:325–337.

    Article  PubMed  Google Scholar 

  48. Imperato, A., Mele, A., Scrocco, M. G., and Puglisi-Allegra, S. 1992. Chronic cocaine alters limbic extracellular dopamine. Neurochemical basis for addiction. Europ. J. Pharm. 212:299–300.

    Article  Google Scholar 

  49. Rossetti, Z. L., Hmaidan, Y., and Gessa, G. 1992. Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Europ. J. Pharm. 221:227–234.

    Article  Google Scholar 

  50. Di Chiara, G., and Imperato, A. 1988. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA 85:5274–5278.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Patel, A.H., Cousins, M. et al. Different Effects of Opiate Withdrawal on Dopamine Turnover, Uptake, and Release in the Striatum and Nucleus Accumbens. Neurochem Res 23, 875–885 (1998). https://doi.org/10.1023/A:1022463029351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022463029351

Navigation