Skip to main content
Log in

Data Compression Limit for an Information Source of Interacting Qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A system of interacting qubits can be viewed as a non-i.i.d quantum information source. A possible model of such a source is provided by a quantum spin system, in which spin-1/2 particles located at sites of a lattice interact with each other. We establish the limit for the compression of information from such a source and show that asymptotically it is given by the von Neumann entropy rate. Our result can be viewed as a quantum ana-logue of Shannon's noiseless coding theorem for a class of non-i.i.d. quantum informa-tion sources. From the probabilistic point of view it is an analog of the Shannon-McMillan-Breiman theorem considered as a cornerstone of modern Information Theory.

PACS: 03.67-a; 03.67.Lx

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, quant-ph/0008024.

  2. C. Borgs, R. Kotecký, and D. Ueltschi, Commun. Math. Phys. 181, 409–446, (1996).

    Google Scholar 

  3. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics II (Springer-Verlag, New York-Heidelberg-Berlin, 1981).

    Google Scholar 

  4. T. M. Cover and J. A. Thomas, Elements of Information Theory (John Wiley and Sons, New York, 1991).

    Google Scholar 

  5. N. Datta, R. Fernández, and J. Fröhlich, J. Stat. Phys. 84, 455–534 (1996).

    Google Scholar 

  6. N. Datta, R. Fernández, J. Frölich, and L. Rey-Bellet, Helv. Phys. Acta, 752-820 (1996).

  7. W. Holsztynski and J. Slawny, Commun. Math. Phys. 61, 177–190 (1978).

    Google Scholar 

  8. R. Jozsa and B. Schumacher, J. Mod. Optics 41, 2343–2349 (1994).

    Google Scholar 

  9. B. Juisgaard, A. Kozhekhin, and E. S. Polzik, Nature 413, 400–403 (2001).

    Google Scholar 

  10. V. Korepin, quant-ph/0202054.

  11. E. H. Lieb and M. B. Ruskai, J. Math. Phys. 14, 1938–1941 (1973).

    Google Scholar 

  12. M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  13. T. J. Osborne and M. A. Nielsen, Quantum Information Processing 1, February (2002).

  14. D. Petz, A talk given at the Volterra-CIRM International School on Quantum Information and Quantum Computing in Trento, July (2001).

  15. D. Petz and M. Mosonyi, J. Math. Phys. 42, 4857–4864 (2001).

    Google Scholar 

  16. S. A. Pirogov. Soviet Math. Dokl. 19, 1096–1099 (1978).

    Google Scholar 

  17. S. A. Pirogov and Ya. G. Sinai, Theor. Math. Phys. 25, 1185–1192 (1976).

    Google Scholar 

  18. S. A. Pirogov and Ya. G. Sinai, Theor. Math. Phys. 26, 39–49 (1976).

    Google Scholar 

  19. C. A. Sackett, D. Kleipinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, Nature 404, 256–259 (2001).

    Google Scholar 

  20. B. Schumacher, Phys. Rev. A 51, 2738–2747 (1995).

    Google Scholar 

  21. C. E. Shannon, Bell System Tech. J. 27, 379–423 and 623-656 (1918).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjana Datta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, N., Suhov, Y. Data Compression Limit for an Information Source of Interacting Qubits. Quantum Information Processing 1, 257–281 (2002). https://doi.org/10.1023/A:1022148203300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022148203300

Navigation