Skip to main content
Log in

Analysis of Bispecific Monoclonal Antibody Binding to Immobilized Antigens Using an Optical Biosensor

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The interaction between two different monoclonal antibodies (Mabs) and their corresponding bispecific antibodies (Babs) with immobilized antigens was investigated using an optical biosensor (IAsys). The analyzed panel of affinity-purified antibodies included two parental Mabs (one of which was specific to human IgG (hIgG), and another one to horseradish peroxidase (HRP)), as well as Babs derived thereof (anti-hIgG/HRP). Babs resulting from the fusion of parental hybridomas bear two antigen-binding sites toward two different antigens and thus may interact with immobilized antigen through only one antigen-binding site (monovalently). Using an IAsys biosensor this study shows that the bivalent binding of Mabs predominates over the monovalent binding with immobilized HRP, whereas anti-hIgG parental Mabs were bound monovalently to the immobilized hIgG. The observed equilibrium association constant (K ass) values obtained in our last work [1] by solid-phase radioimmunoassay are consistent with those constants obtained by IAsys. The K ass of anti-HRP Mabs was about 50 times higher than that of anti-HRP shoulder of Babs. The dissociation rate constant (k diss) for anti-HRP shoulder of Babs was 21 times higher than k diss for anti-HRP Mabs. The comparison of the kinetic parameters for bivalent anti-HRP Mabs and Babs derived from anti-Mb/HRP and anti-hIgG/HRP, allowed to calculate that 95% of bound anti-HRP Mabs are bivalently linked with immobilized HRP, whereas only 5% of bound anti-HRP Mabs are monovalently linked. In general, the data obtained indicate that Babs bearing an enzyme-binding site may not be efficiently used instead of traditional antibody–enzyme conjugates in the case of binding of bivalent Mabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Dmitrie, D. A., Massino, Y. S., Segal, O. L., Smirnova, M. B., Kolyaskina, G. I., Pavlova, E. V., Osipov, A. P., Egorov, A. M., and Dmitriev, A. D. (2001) Clin. Chim. Acta, 309, 57-71.

    Google Scholar 

  2. Kaufman, E. N., and Jain, R. K. (1992) Cancer Res., 52, 4157-4167.

    Google Scholar 

  3. Fanger, M. W., Morganelli, P. M., and Guyre, P. M. (1992) Crit. Rev. Immunol., 12, 101-124.

    Google Scholar 

  4. Self, C. H., and Cook, D. B. (1996) Curr. Opin. Biotechnol., 7, 60-65.

    Google Scholar 

  5. Cao, Y., and Suresh, M. R. (1998) Bioconjug. Chem., 9, 635-644.

    Google Scholar 

  6. Allard, W. J., Moran, C. A., Nagel, E., Collins, G., and Largen, M. T. (1992) Mol. Immunol., 29, 1219-1227.

    Google Scholar 

  7. Smirnova, M. B., Dergunova, N. N., Kizim, E. A., Massino, Yu. S., Nikulina, V. A., Segal, O. L., Tereshkina, E. B., Kolyaskina, G. I., and Dmitriev, A. D. (1997) Biochemistry (Moscow), 62, 41-48.

    Google Scholar 

  8. Horenstein, A. L., Poiesi, C., DeMonte, L., Camagna, M., Mariani, M., Albertini, A., and Malavasi, F. (1993) Int. J. Clin. Lab. Res., 23, 199-205.

    PubMed  Google Scholar 

  9. Horenstein, A., Poiesi, C., Camagna, M., de Monte, L., Mariani, M., Albertini, A., and Malavasi, F. (1994) Cell Biophys., 24/25, 109-117.

    Google Scholar 

  10. Crothers, D. M., and Metzger, H. (1972) Immunochemistry, 9, 341-357.

    PubMed  Google Scholar 

  11. Dower, S. K., Ozato, K., and Segal, D. M (1984) J. Immunol., 132, 751-758.

    PubMed  Google Scholar 

  12. Mason, D. W., and Williams, A. F. (1986) in Handbook of Experimental Immunology (Weir, D. M., ed.) Blackwell Scientific, Oxford, p. 381.

    Google Scholar 

  13. Karulin, A. Yu., and Dzantiev, B. B. (1990) Mol. Immunol., 27, 965-971.

    Article  PubMed  Google Scholar 

  14. Cush, R., Cronin, J. M., Stewart, W. J., Maule, C. H., Molloy, J., and Goddard, N. J. (1993) Biosens. Bioelectron., 8, 347-353.

    Article  Google Scholar 

  15. Buckle, P. E., Davies, R. J., Kinning, T., Yeung, D., Edwards, P. R., Pollard-Knight, D., and Lowe, C. R. (1993) Biosens. Bioelectron., 8, 355-363.

    Article  Google Scholar 

  16. Davies, R. J., Edwards, P. R., Watts, H. J., Lowe, C. R., Buckle, P. E., Yeung, D., Kinning, T. M., and Pollard-Knight, D. V. (1994) in Techniques in Protein Chemistry. V (Crabb, J. W., ed.) Academic Press, London, p. 285.

    Google Scholar 

  17. Karlsson, R., Michaelsson, A., and Mattsson, L. (1991) J. Immunol. Meth., 145, 229-240.

    Article  Google Scholar 

  18. George, A. J. T., French, R. R., and Glennie, M. J. (1995) J. Immunol. Meth., 183, 51-63.

    Article  Google Scholar 

  19. Nice, E. C., McInerney, T. L., and Jackson D. C. (1996) Mol. Immunol., 33, 659-670.

    Article  PubMed  Google Scholar 

  20. Massino, Y. S., Dergunova, N. N., Kizim, E. A., Smirnova, M. B., Tereshkina, E. B., Kolyaskina, G. I., and Dmitriev, A. D. (1997) J. Immunol. Meth., 201, 57-66.

    Article  Google Scholar 

  21. Laemmli, U. K. (1970) Nature, 277, 680-685.

    Google Scholar 

  22. Fasman, G. D. (ed.) (1976) Handbook of Biochemistry and Molecular Biology. Sect. A: Proteins, 3rd ed., CRC Press, Cleveland, p. 383.

    Google Scholar 

  23. Ishikawa, E., Imagava, M., Hashida, S., Yoshitake, S., Hamaguchi, Y., and Ueno, T. (1983) J. Immunoassay, 4, 209-327.

    PubMed  Google Scholar 

  24. Massino, Y. S., Kizim, E. A., Dergunova, N. N., Vostrikov, V. M., and Dmitriev, A. D. (1992) Immunol. Lett., 33, 217-222.

    Article  PubMed  Google Scholar 

  25. Yeung, D., Gill, A., Maule, C. H., and Davies, R. J. (1995) Trends Analyt. Chem., 14, 49-57.

    Google Scholar 

  26. O'shannessy, D. J., Brigham-Burke, M., Soneson, K. K., Hensley, P., and Brooks, I. (1993) Analyt. Biochem., 212, 457-468.

    PubMed  Google Scholar 

  27. Pellequer, J. L., and van Regenmortel, M. H. (1993) J. Immunol. Meth., 166, 133-143.

    Google Scholar 

  28. Muller, K. M., Arndt, K. M., and Pluckthun, A. (1998) Analyt. Biochem., 261, 149-158.

    PubMed  Google Scholar 

  29. McCloskey, N., Turner, M. W., and Goldblatt, D. (1997) J. Immunol. Meth., 205, 67-72.

    Google Scholar 

  30. Milstein, C., and Cuello, A. C. (1983) Nature, 305, 537-540.

    PubMed  Google Scholar 

  31. Somasundaram, C., Matzku, S., Schuhmaker, J., and Zoller, M. (1993) Cancer Immunol. Immunother., 36, 337-345.

    PubMed  Google Scholar 

  32. Djavadi-Ohaniance, L., and Friquet, B. (1991) in The Immunochemistry of Solid-Phase Immunoassay (Butler, J. E., ed.) CRC Press, Boca Raton, FL, p. 199.

    Google Scholar 

  33. Nygren, H., Czerkinski, C., and Stenberg, M. (1985) J. Immunol. Meth., 85, 87-95.

    Google Scholar 

  34. Smirnova, M. B., Nikulina, V. A., Segal, O. L., Kizim, E. A., Massino, Y. S., Ryazanskaya, N. N., Kolyaskina, G. I., and Dmitriev, A. D. (1999) Biochemistry (Moscow), 64, 639-647.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Dmitriev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitriev, D.A., Massino, Y.S., Segal, O.L. et al. Analysis of Bispecific Monoclonal Antibody Binding to Immobilized Antigens Using an Optical Biosensor. Biochemistry (Moscow) 67, 1356–1365 (2002). https://doi.org/10.1023/A:1021805909314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021805909314

Navigation