Skip to main content
Log in

The Correcting Role of Autonomous 3" → 5" Exonucleases Contained in Mammalian Multienzyme DNA Polymerase Complexes

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A study was made of the correcting role of autonomous 3" → 5" exonucleases (AE) contained in multienzyme DNA polymerase complexes of rat hepatocytes or calf thymocytes. DNA was synthesized on phage φX174 amber3 or M13mp2 primer–templates, and used to transfect Escherichia coli spheroplasts. Frequencies were estimated for direct and reverse mutations resulting from mistakes made in the course of in vitro DNA synthesis. The error rate of the hepatocyte complex was estimated at 3 · 10–6 with equimolar dNTP, and increased tenfold when proteins accounting for 70% of the total 3" → 5" exonuclease activity of the complex were removed. The fidelity of DNA synthesis was completely restored in the presence of exogenous AE (ε subunit of E. coli DNA polymerase III). Nuclear (Pol δn) and cytosolic (Pol δc) forms of DNA polymerase δ were isolated from calf thymocytes. The former was shown to contain an AE (TREX2) absent from the latter. As compared with Pol δc, Pol δn had a 20-fold higher exo/pol ratio and allowed 4–5 times higher fidelity of DNA synthesis. The error rate of DNA polymerase complexes changed when dNTP were used in nonequimolar amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kunkel, T.A., BioEssays, 1992, vol. 14, pp. 303–308.

    Google Scholar 

  2. Roberts, J.D. and Kunkel, T.A., DNA Replication in Eukaryotic Cells, Kelly, T. and Stillman, B., Eds., Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press, 1996, pp. 217–247.

    Google Scholar 

  3. Burgers, P.M.J., Koonin, E.V., Bruford, E., et al., J. Biol. Chem., 2001, vol. 376, pp. 43487–43490.

    Google Scholar 

  4. Belyakova, N.V., Kleiner, N.E., Kravetskaya, T.P., et al, Eur. J. Biochem., 1993, vol. 217, pp. 493–500.

    Google Scholar 

  5. Shevelev, I.V., Belyakova, N.V., Kravetskaya, T.P., and Krutyakov, V.M., Mutat. Res., 2000, vol. 459, pp. 237–242.

    Google Scholar 

  6. Weiser, T., Gassmann, M., Thommes, P., et al., J. Biol. Chem., 1991, vol. 266, pp. 10420–10428.

    Google Scholar 

  7. Gassmann, M., Thommes, P., Weiser, T., and Hubscher, U., FASEB J., 1990, vol. 4, pp. 2528–2532.

    Google Scholar 

  8. Koundrioukoff, S., Jonsson, Z.O., Hasan, S., et al, J. Biol. Chem., 2000, vol. 275, pp. 22882–22887.

    Google Scholar 

  9. Burton, K., Methods in Enzymology, vol. XII: Nucleic Acids, Grossman, L. and Moldave, K., Eds., New York: Academic, 1967. Translated under the title Metody issledovaniya nukleinovykh kislot, Moscow: Mir, 1970, pp. 7–10.

    Google Scholar 

  10. Georgiev, G.P., Khimiya i biokhimiya nukleinovykh kislot (Nucleic Acid Chemistry and Biochemistry), Zbarskii, I.B. and Debov, S.S., Eds., Leningrad: Meditsina, 1968.

    Google Scholar 

  11. Lowry, O.H., Rosebrough, N.I., Farr, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    Google Scholar 

  12. Kunkel, T.A., J. Biol. Chem., 1985, vol. 260, pp. 5787–5796.

    Google Scholar 

  13. Kunkel, T.A., James, E.E., and Loeb, L.A., DNA Repair, Friedberg, E.C. and Hanawalt, P.C., Eds., New York: Stanford Univ. Press, 1983, vol. 2, pp. 223–237.

    Google Scholar 

  14. Legina, O.K., Belyakova, N.V., Kleiner, N.E., et al., Mol. Biol., 1990, vol. 24, pp. 156–162.

    Google Scholar 

  15. Mazur, D.R. and Perrino, F.W., J. Biol. Chem., 1999, vol. 247, pp. 19 655–19 660.

    Google Scholar 

  16. Krutyakov, V.M., Belyakova, N.V., Kravetskaya, T.P., et al., Cold Spring Harbor Symposia: Eukaryotic DNA Replication, Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press, 1995, p. 103.

    Google Scholar 

  17. Shevelev, I.V. and Krutyakov, V.M., Cold Spring Harbor Symposia: Eukaryotic DNA Replication, Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press, 1997, p. 110.

    Google Scholar 

  18. Timchenko, N.A., Belyakova, N.V., Timchenko, L.T., and Krutyakov, V.M., Mol. Biol., 1989, vol. 23, pp. 1171–1176.

    Google Scholar 

  19. Shevelev, I.V., Legina, O.K., Tutaev, K.Yu., and Krutyakov, V.M., Mol. Biol., 1998, vol. 32, pp. 741–744.

    Google Scholar 

  20. Muzyczka, N., Poland, R.L., and Bessman, M.J., J. Biol. Chem., 1972, vol. 247, pp. 7116–7122.

    Google Scholar 

  21. DiFranchesko, R., Bhatnagar, S.K., Brown, A., and Bessman, M.J., J. Biol. Chem., 1984, vol. 259, pp. 5567–5573.

    Google Scholar 

  22. Morrison, A., Bell, J.B., Kunkel, T.A., and Sugino, A., Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 9473–9477.

    Google Scholar 

  23. Simon, M., Giot, L., and Faye, G., EMBO J., 1991, vol. 10, pp. 2165–2170.

    Google Scholar 

  24. Jonczyk, P., Fijalkowska, Y., and Ciesla, Z., Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 9124–9127.

    Google Scholar 

  25. Ciesla, Z., Jonczyk, P., and Fijalkowska, I., Mol. Gen. Genet., 1990, vol. 221, pp. 251–255.

    Google Scholar 

  26. Shevelev, I.V., Kravetskaya, T.P., Legina, O.K., and Krutyakov, V.M., Mutat. Res., 1996, vol. 352, pp. 51–55.

    Google Scholar 

  27. Ronzhina, N.L., Kravetskaya, T.P., and Krutyakov, V.M., Zh. Evolyuts. Biokhim. Fiziol., 2000, vol. 36, pp. 198–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevelev, I.V., Belyakova, N.V., Kravetskaya, T.P. et al. The Correcting Role of Autonomous 3" → 5" Exonucleases Contained in Mammalian Multienzyme DNA Polymerase Complexes. Molecular Biology 36, 857–863 (2002). https://doi.org/10.1023/A:1021694212116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021694212116

Navigation