Skip to main content
Log in

Delayed Hypothermia Prevents Decreases in N-Acetylaspartate and Reduced Glutathione in the Cerebral Cortex of the Neonatal Pig Following Transient Hypoxia-Ischaemia

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of normothermia and delayed hypothermia on the levels of N-acetylaspartate (NAA), reduced glutathione (GSH) and the activities of mitochondrial complex I, II-III, IV and citrate synthase were measured in brain homogenates obtained from anaesthetized neonatal pigs following transient in vivo hypoxia-ischaemia. In the normothermic animals there was a significant decrease in complex I activity and in the levels of GSH and NAA when compared to the controls. Delayed hypothermia preserved NAA and GSH at control levels and enhanced the rate of complex II-III activity. There was correlation (R = 0.79) between GSH and NAA levels when data from all three experimental groups were analyzed. Citrate synthase activity was not significantly different in the three groups, indicating maintenance of mitochondrial integrity. These data suggest that delayed hypothermia affords protection of integrated mitochondrial function in the neonatal brain following transient hypoxia-ischaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Robertson, N. J. and Edwards, A. D. 1998. Recent advances in developing neuroprotective strategies for perinatal asphyxia. Curr. Op. Pediatr. 10:575–580.

    Google Scholar 

  2. Lorek, A., Takei, Y., Cady, E. B., Wyatt, J. S., Penrice, J., Edwards, A. D., Peebles, D., Wylezinska, M., Owen-Reece, H., Kirkbride, V., Cooper, C. E., Aldridge, R. F., Roth, S. C., Brown, G., Delphy, D. T., and Reynolds, E. O. R. 1994. Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischaemia in the newborn piglet: Continuous 48–hour studies by phosphorus magnetic resonance spectroscopy. Pediatr. Res. 36:699–706.

    Google Scholar 

  3. Corbett, R. J., Laptook, A. R., Nunnally, R. L., Hassan, A., and Jackson, J. 1988. Intracellular pH, lactate and energy metabolism in neonatal brain during partial ischaemia measured in vivo by 31P and 1H nuclear magnetic resonance spectroscopy. J. Neurochem. 51:1501–1509.

    Google Scholar 

  4. Penrice, J., Lorek, A., Cady, E. B., Amess, P. N., Wylezinska, M., Cooper, C. E., D'ouza, P., Brown, G. C., Kirkbride, V., Edwards, A. D., Wyatt, J. S., and Reynolds, E. O. 1997. Proton magnetic resonance spectroscopy of the brain during acute hypoxiaischemia and delayed cerebral energy failure in the newborn piglet. Pediatr. Res. 41:795–802.

    Google Scholar 

  5. Patel, T. B. and Clark, J. B. 1979. Synthesis of N-acetyl-Laspartate by rat brain mitochondria and its involvement in mitochondrial/ cytosolic carbon transport. Biochem. J. 184:539–546.

    Google Scholar 

  6. Bates, T. E., Strangward, M., Keelan, J., Davey, G. P., Munro, P. M., and Clark, J. B. 1996. Inhibition of N-acetylaspartate production: Implications for 1H MRS studies in vivo. NeuroReport 7:1397–1400.

    Google Scholar 

  7. Heales, S. J. R., Davies, S. E. C., Bates, T. E., and Clark, J. B. 1995. Depletion of brain glutathione is accompanied by impaired mitochondrial function. Neurochem. Res. 20:31–38.

    Google Scholar 

  8. Brooks, K. J., Hargreaves, I. P., Clark, J. B., and Bates, T. E. 1998. Ischaemia-induced damage to mitochondrial complexes in the neonatal brain-role of NO. Biochem. Soc. Trans. 26:S343.

    Google Scholar 

  9. Brooks, K. J., Hargreaves, I. P., and Bates, T. E. 2000. Nitric-oxide induced inhibition of mitochondrial complexes following aglycaemic hypoxia in neonatal cortical rat brain slices. Dev. Neurosci. 22:359–365.

    Google Scholar 

  10. Keelan, J., Bates, T. E., and Clark, J. B. 1999. Heightened resistance of the neonatal brain to ischemia-reperfusion involves a lack of mitochondrial damage in the nerve terminal. Brain Res. 821:124–133.

    Google Scholar 

  11. Amess, P. N., Penrice, J., Cady, E. B., Lorek, A., Wylezinska, M., Cooper, C. E., D'ouza, P., Tyszcuk, L., Thoresen, M., Edwards, A. D., Wyatt, J. S., and Reynolds, E. O. 1997. Mild hypothermia after severe transient hypoxia-ischaemia reduces the delayed rise in cerebral lactate in the newborn piglet. Pediatr. Res. 41:803–808.

    Google Scholar 

  12. Edwards, A. D., Yue, X., Squier, M. V., Thoresen, M., Cady, E. B., Penrice, J., Cooper, C. E., Wyatt, J. S., Reynolds, E. O., and Mehmet, H. 1995. Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia. Biochem. Biophys. Res. Comm. 217:1193–1199.

    Google Scholar 

  13. Laptook, A. R., Corbett, R. J., Sterett, R., Burns, D. K., Garcia, D., and Tollefsbol, G. 1997. Modest hypothermia provides partial neuroprotection when used for immediate resuscitation after brain ischaemia. Pediatr. Res. 42:17–23.

    Google Scholar 

  14. Thoresen, M., Penrice, J., Lorek, A., Cady, E. B., Wylezinska, M., Kirkbride, V., Cooper, C. E., Brown, G. C., Edwards, A. D., Wyatt, J. S., and Reynolds, E. O. R. 1995. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr. Res. 37:667–670.

    Google Scholar 

  15. Canevari, L., Console, A., Tendi, E. A., Clark, J. B., and Bates, T. E. 1999. Effect of postischaemic hypothermia on the mitochondrial damage induced by ischaemia and reperfusion in the gerbil. Brain Res. 817:241–245.

    Google Scholar 

  16. Amess, P. N., Penrice, J., Wylezinska, M., Lorek, A., Townsend, J., Wyatt, J. S., Amiel-Tison, C., Cady, E. B., and Stewart, A. 1999. Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev. Med. Child Neurol. 41:436–445.

    Google Scholar 

  17. Koller, K. J., Zaczek, R., and Coyle, J. T. 1984. N-acetyl-aspartyl-glutamate: Regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. J. Neurochem. 43:1136–1142.

    Google Scholar 

  18. Bhakoo, K. K. and Pearce, D. 2000. In vitro expression of N-acetyl aspartate by oligodendrocytes: Implications for proton magnetic resonance spectroscopy signal in vivo. J. Neurochem. 74:254–262.

    Google Scholar 

  19. Riederer, P., Sofic, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K., and Youdin, M. B. H. 1989. Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J. Neurochem. 52:515–520.

    Google Scholar 

  20. 20. O'Brien, F., Brooks, K., Amess, P., Cady, E., Clemence, M., Nguyen, Q., Noone, M., Ordidge, R., Parker, N., Sakata, Y., Sellwood, M., Springett, R., Thornton, J., Wylezinska, M., and Wyatt, J. 2000. Delayed hypothermia following transient cerebral hypoxia-ischaemia. Page 66, in Proceedings of the European Society for Pediatric Research, 41st Annual Meeting, Rhodes, Greece.

  21. Davey, G. P., Peuchen, S., and Clark, J. B. 1998. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J. Biol. Chem. 273:12753–12757.

    Google Scholar 

  22. Papadopoulos, M. C., Giffard, R. G., and Bell, B. A. 2000. An introduction to the changes in gene expression that occur after cerebral ischaemia. Br. J. Neurosurg. 14:305–310.

    Google Scholar 

  23. Bates, S., Read, S. J., Harrison, D. C., Topp, S., Morrow, R., Gale, D., Murdock, P., Barone, F. C., Parsons, A. A., and Gloger, I. S. 2001. Characterisation of gene expression changes following permanent MCAO in the rat using subtractive hybridisation. Brain Res. Mol. Brain Res. 93:70–80.

    Google Scholar 

  24. Kim, H., Huh, P. W., Kim, C., Kim, Y. J., Park, E. M., and Park, Y. M. 2001. Cerebral activation and distribution of inducible hsp110 and hsp70 mRNAs following focal ischemia in rat. Toxicology 167:135–144.

    Google Scholar 

  25. Sammut, I. A., Jayakumar, J., Latif, N., Rothery, S., Severs, N. J., Smolenski, R. T., Bates, T. E., and Yacoub, M. H. 2001. Heat stress contributes to the enhancement of cardiac mitochondrial complex activity. Am. J. Pathol. 158:1821–1831.

    Google Scholar 

  26. Thornton, J. S., Ordidge, R. J., Penrice, J., Cady, E. B., Amess, P. N., Punwani, S., Clemence, M., and Wyatt, J. S. 1997. Anisotropic water diffusion in white and gray matter of the neonatal piglet brain before and after transient hypoxia-ischaemia. Mag. Res. Imag. 15:433–440.

    Google Scholar 

  27. Thornton, J. S., Ordidge, R. J., Penrice, J., Cady, E. B., Amess, P. N., Punwani, S., Clemence, M., and Wyatt J. S. 1998. Temporal and anatomical variations of brain water apparent diffusion coefficient in perinatal cerebral hypoxic-ischemic injury: Relationships to cerebral energy metabolism. Mag. Res. Med. 39:920–927.

    Google Scholar 

  28. Sager, T. N., Topp, S., Torup, L., Hanson, L. G., Egestad, B., and Moller, A. 2001. Evaluation of CA1 damage using single-voxel 1H-MRS and un-biased stereology: Can non-invasive measures of N-acetyl-asparate following global ischemia be used as a reliable measure of neuronal damage? Brain Res. 892:166–175.

    Google Scholar 

  29. Heales, S. J., Bolanos, J. P., Stewart, V. C., Brookes, P. S., Land, J. M., and Clark, J. B. 1999. Nitric oxide, mitochondria and neurological disease. Biochim. Biophys. Acta 1410:215–228.

    Google Scholar 

  30. Sagara, J., Makino, N., and Bannai, S. 1996. Glutathione efflux from cultured astrocytes. J. Neurochem. 66:1876–1881.

    Google Scholar 

  31. Dringen, R. 2000. Metabolism and functions of glutathione. Progr. Neurobiol. 68:649–671.

    Google Scholar 

  32. Towfighi, J., Zec, N., Yager, J., Housman, C., and Vannucci, R. 1995. Temporal evolution of neuropathologic changes in immature rat model of cerebral hypoxia: A light microscopic analysis. Acta Neuropathol. 90:375–386.

    Google Scholar 

  33. Moss, D. W. and Bates, T. E. 2001. Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated decreases in mitochondrial and cellular function. Eur. J. Neurosc. 13:529–538.

    Google Scholar 

  34. Lizasoain, I., Moro, M. A., Knowles, R. G., Darley-Usmar, V., and Moncada, S. 1996. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem. J. 314:877–880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, K.J., Hargreaves, I., Bhakoo, K. et al. Delayed Hypothermia Prevents Decreases in N-Acetylaspartate and Reduced Glutathione in the Cerebral Cortex of the Neonatal Pig Following Transient Hypoxia-Ischaemia. Neurochem Res 27, 1599–1604 (2002). https://doi.org/10.1023/A:1021622724485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021622724485

Navigation