Skip to main content
Log in

BP-80 as a vacuolar sorting receptor

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ahmed, S.U., Bar-Peled, M. and Raikhel, N.V. 1997. Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol. 114: 325–336.

    Google Scholar 

  • Ahmed, S.U., Rojo, E., Kovaleva, V., Venkataraman, S., Dombrowski, J.E., Matsuoka, K. and Raikhel, N.V. 2000. The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J. Cell. Biol. 149: 1335–1344.

    Google Scholar 

  • Atkinson, A.H., Heath, R.L., Simpson, R.J., Clarke, A.E. and Anderson, M.A. 1993. Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors. Plant Cell 5: 203–213.

    Google Scholar 

  • Bassham, D.C. and Raikhel, N.V. 2000a. Plant cells are not just green yeast. Plant Physiol. 122: 999–1001.

    Google Scholar 

  • Bassham, D.C. and Raikhel, N.V. 2000b. Unique features of the plant vacuolar sorting machinery. Curr. Opin. Cell Biol. 12: 491–495.

    Google Scholar 

  • Boller, T. and Kende, H. 1979. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 63: 1123–1132.

    Google Scholar 

  • Brandizzi, F., Frangne, N., Marc-Martin, S., Hawes, C., Neuhaus, J.-M. and Paris, N. 2002. In plants the destination for single pass membrane proteins is markedly influenced by the length of the hydrophobic domain. Plant Cell, in press.

  • Bryant, N.J. and Stevens, T.H. 1998. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol. Mol. Biol. Rev. 62: 230 ff.

    Google Scholar 

  • Cao, X., Rogers, S.W., Butler, J., Beevers, L. and Rogers, J.C. 2000. Structural requirements for ligand binding by a probable plant vacuolar sorting receptor. Plant Cell 12: 493–506.

    Google Scholar 

  • Conceiçao, A.D.S., Marty-Mazars, D., Bassham, D.C., Sanderfoot, A.A., Marty, F. and Raikhel, N.V. 1997. The syntaxin homolog atPEP12p resides on a late post-Golgi compartment in plants. Plant Cell 9: 571–582.

    Google Scholar 

  • Cooper, A.A. and Stevens, T.H. 1996. Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J. Cell Biol. 133: 529–541.

    Google Scholar 

  • Di Sansebastiano, G.-P., Paris, N., Marc-Martin, S. and Neuhaus, J.-M. 1998. Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J. 15: 449–457.

    Google Scholar 

  • Dombrowski, J.E., Schroeder, M.R., Bednarek, S.Y. and Raikhel, N.V. 1993. Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell 5: 587–596.

    Google Scholar 

  • Felsenstein, J. 1988. Phylogenies from molecular sequences: inference and reliability. Annu. Rev. Genet. 22: 521–565.

    Google Scholar 

  • Frigerio, L., Jolliffe, N.A., Di Cola, A., Hernández Felipe, D., Paris, N., Neuhaus, J.-M., Lord, J.M., Ceriotti, A. and Roberts, L.M. 2001. The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting. Plant Physiol. 126: 167–175.

    Google Scholar 

  • Gomord, V., Denmat, L.A., Fitchette-Lainé, A.C., Satiat-Jeunemaitre, B., Hawes, C. and Faye, L. 1997. The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J. 11: 313–325.

    Google Scholar 

  • Hadlington, J.L. and Denecke, J. 2000. Sorting of soluble proteins in the secretory pathway of plants. Curr. Opin. Plant Biol. 3: 461–468.

    Google Scholar 

  • Hara-Nishimura, I., Shimada, T., Hiraiwa, N. and Nishimura, M. 1995. Vacuolar processing enzyme responsible for maturation of seed proteins. J. Plant Physiol. 145: 632–640.

    Google Scholar 

  • Hara-Nishimura, I., Shimada, T., Hatano, K., Yakeuchi, Y. and Nishimura, M. 1998. Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10: 825–836.

    Google Scholar 

  • Hinz, G., Hillmer, S., Baumer, M. and Hohl, I. 1999. Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the Golgi apparatus of developing pea cotyledons in different transport vesicles. Plant Cell 11: 1509–1524.

    Google Scholar 

  • Hohl, I., Robinson, D.G., Chrispeels, M.J. and Hinz, G. 1996. Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J. Cell Sci. 109: 2539–2550.

    Google Scholar 

  • Holwerda, B.C., Galvin, N.J., Baranski, T.J. and Rogers, J.C. 1990. In vitro processing of aleurain, a barley vacuolar thiol protease. Plant Cell 2: 1091–1106.

    Google Scholar 

  • Holwerda, B.C., Padgett, H.S. and Rogers, J.C. 1992. Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4: 307–318.

    Google Scholar 

  • Humair, D., Hernández Felipe, D., Neuhaus, J.-M. and Paris, N. 2001. Demonstration in yeast of the function of BP-80, a putative plant vacuolar sorting receptor. Plant Cell 13: 781–792.

    Google Scholar 

  • Jauh, G.Y., Fischer, A.M., Grimes, H.D., Ryan, C.A. and Rogers, J.C. 1998. ?-tonoplast intrinsic protein defines unique plant vacuole functions. Proc. Natl. Acad. Sci. USA 95: 12995–12999.

    Google Scholar 

  • Jiang, L., Phillips, T.E., Rogers, S.W. and Rogers, J.C. 2000. Biogenesis of the protein storage vacuole crystalloid. J. Cell Biol. 150: 755–770.

    Google Scholar 

  • Jiang, L., Phillips, T.E., Hamm, C.A., Drozdowicz, Y.M., Rea, P.A., Maeshima, M., Rogers, S.W. and Rogers, J.C. 2001. The protein storage vacuole: a unique compound organelle. J. Cell Biol. 155: 991–1002.

    Google Scholar 

  • Kirsch, T., Paris, N., Butler, J.M., Beevers, L. and Rogers, J.C. 1994. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc. Natl. Acad. Sci. USA 91: 3403–3407.

    Google Scholar 

  • Kirsch, T., Saalbach, G., Raikhel, N.V. and Beevers, L. 1996. Interaction of a potential vacuolar targeting receptor with amino-and carboxyl-terminal targeting determinants. Plant Physiol. 111: 469–474.

    Google Scholar 

  • Koide, Y., Hirano, H., Matsuoka, K. and Nakamura, K. 1997. The N-terminal propeptide of the precursor to sporamin acts as a vacuole-targeting signal even at the C-terminus of themature part in tobacco cells. Plant Physiol. 114: 863–870.

    Google Scholar 

  • Kornfeld, S. 1987. Trafficking of lysosomal enzymes. FASEB J. 1: 462–468.

    Google Scholar 

  • Kornfeld, S. 1992. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu. Rev. Biochem. 61: 307–330.

    Google Scholar 

  • Kunze, I., Hensel, G., Adler, K., Bernard, J., Neubohn, B., Nilsson, C., Stoltenburg, R., Kohlwein, S.D. and Kunze, G. 1999. The green fluorescent protein targets secretory proteins to the yeast vacuole. Biochim. Biophys. Acta Bioenergetics 1410: 287–298.

    Google Scholar 

  • Laval, V., Chabannes, M., Carrière, M., Canut, H., Barre, A., Rougé, P., Pont-Lezica, R. and Galaud, J.-P. 1999. A family of Arabidopsis plasma membrane receptors presenting animal ß-integrin domains. Biochim. Biophys. Acta 1435: 61–70.

    Google Scholar 

  • Lee, M.C.S., Scanion, M.J., Craik, D.J. and Anderson, M.A. 1999. A novel two-chain proteinase inhibitor generated by circularization of a multidomain precursor protein. Nature Struct. Biol. 6: 526–530.

    Google Scholar 

  • Lord, J.M. 1985. Precursors of ricin and Ricinus communis agglutinin. Glycosylation and processing during synthesis and intracellular transport. Eur. J. Biochem. 146: 411–416.

    Google Scholar 

  • Matsuoka, K. 2000. C-terminal propeptides and vacuolar sorting by BP-80-type proteins: not all C-terminal propeptides are equal. Plant Cell 12: 181–182.

    Google Scholar 

  • Matsuoka, K. and Nakamura, K. 1991. Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc. Natl. Acad. Sci. USA 88: 834–838.

    Google Scholar 

  • Matsuoka, K. and Nakamura, K. 1999. Large alkyl side-chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor. Plant Mol. Biol. 41: 825–835.

    Google Scholar 

  • Matsuoka, K. and Neuhaus, J.-M. 1999. Cis-elements of protein transport to the plant vacuoles. J. Exp. Bot. 50: 165–174.

    Google Scholar 

  • Matsuoka, K., Bassham, D.C., Raikhel, N. and Nakamura, K. 1995. Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J. Cell. Biol. 130: 1307–1318.

    Google Scholar 

  • Mellman, I. and Warren, G. 2000. The road taken: past and future foundations of membrane traffic. Cell 100: 99–112.

    Google Scholar 

  • Miller, E.A. and Lee, M.C.S. 1999. Identification and characterization of a prevacuolar compartment in stigmas of Nicotiana alata. Plant Cell 11: 1499–1508.

    Google Scholar 

  • Müntz, K. 1998. Deposition of storage proteins. Plant Mol. Biol. 38: 77–99.

    Google Scholar 

  • Nakamura, K., Matsuoka, K., Mukumoto, F. and Watanabe, N. 1993. Processing and transport to the vacuole of a precursor to sweet potato sporamin in transformed tobacco cell line BY-2. J. Exp. Bot. 44 (Suppl.): 331–338.

    Google Scholar 

  • Neuhaus, J.-M. and Rogers, J. 1998. Sorting of proteins to vacuoles in plant cells. Plant Mol. Biol. 38: 127–144.

    Google Scholar 

  • Neuhaus, J.-M., Sticher, L., Meins, F. and Boller, T. 1991. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc. Natl. Acad. Sci. USA 88: 10362–10366.

    Google Scholar 

  • Paris, N., Stanley, C.M., Jones, R.L. and Rogers, J.C. 1996. Plant cells contain two functionally distinct vacuolar compartments. Cell 85: 563–572.

    Google Scholar 

  • Paris, N., Rogers, S.W., Jiang, L., Kirsch, T., Beevers, L., Phillips, T.E. and Rogers, J.C. 1997. Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol. 115: 29–39.

    Google Scholar 

  • Robinson, D.G. and Hinz, G. 1997. Vacuole biogenesis and protein transport to the plant vacuole: a comparison with the yeast vacuole and the mammalian lysosome. Protoplasma 197: 1–25.

    Google Scholar 

  • Robinson, D.G., Hinz, G. and Holstein, S.E.H. 1998. The molecular characterization of transport vesicles. Plant Mol. Biol. 38: 49–76.

    Google Scholar 

  • Saalbach, G., Rosso, M. and Schumann, U. 1996. The vacuolar targeting signal of the 2S albumin from Brazil nut resides at the C terminus and involves the C-terminal propeptide as an essential element. Plant Physiol. 112: 975–985.

    Google Scholar 

  • Sanderfoot, A.A., Ahmed, S.U., Marty-Mazars, D., Rapoport, I., Kirchhausen, T., Marty, F. and Raikhel, N.V. 1998. A putative vacuolar cargo receptor partially colocalizes with atPEP12p on a prevacuolar compartment in Arabidopsis roots. Proc. Natl. Acad. Sci. USA 95: 9920–9925.

    Google Scholar 

  • Shimada, T., Kuroyanagi, M., Nishimura, M. and Hara-Nishimura, I. 1997. A pumpkin 72-kDa membrane protein of precursoraccumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol. 38: 1414–1420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paris, N., Neuhaus, JM. BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50, 903–914 (2002). https://doi.org/10.1023/A:1021205715324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021205715324

Keywords

Navigation