Skip to main content
Log in

Germplasm characterization of Sesbania accessions based on isozyme analyses

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Twenty-two accessions belonging to seven species of Sesbania Scop. (S. emerus, S. exasperata, S. grandiflora, S. rostrata, S. sesban, S. tetrapteraand S. virgata), were evaluated in order to characterize the isozyme electrophoretic patterns and to estimate their genetic variability and outcrossing rates. Eight isozyme systems were used: acid phosphatase (ACP), isocitrate dehydrogenase (IDH), phosphoglucomutase (PGM), malate dehydrogenase (MDH), phosphoglucoisomerase (PGI), glutamate oxaloacetate transaminase (GOT), peroxidase (PRX) and catalase (CAT), with two gel/electrode buffers and distilled water as the extraction buffer. Cotyledons were chosen for enzyme extraction. The accessions were compared considering the presence/absence of bands for each system. A dendrogram was obtained using the Jaccard similarity index and the UPGMA clustering method, classifying the accessions into eight groups, evidencing both inter- and intraspecific variability. Annual species were classified in one major group separate from the perennials (S. grandiflora, S. sesban, S. virgata), which were allocated into two other main groups. S. virgata accessions (subgenus Daubentonia) were clearly separated from the other species. Isozyme banding patterns for the accessions are presented for each system. A high incidence of intraspecific monomorphism was observed. Interpretation in terms of loci and alleles was made for S. sesbanand S. virgataaccessions, which presented polymorphism for the systems PGI, GOT (S. sesban) and MDH (S. virgata). The average expected heterozygosity estimates varied from 0.0 to 0.231 for S. sesban and 0.0 to 0.20 for S. virgata. A mean number of 2.0 alleles per locus was observed for both species. Population multilocus outcrossing rate (t m) of 0.62 was estimated for S. sesban, indicating a partial allogamy mode of reproduction. Individual families presented multilocus rates varying from 0.00 to 1.00, indicating both self-pollination and cross-pollination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alfenas, A.C., I. Peters, W. Brune & G.C. Passador, 1991. Eletroforese de proteínas e isoenzimas de fungos e essências florestais, 2nd ed Universidade Federal de Viçosa, Viçosa.

    Google Scholar 

  • Brewbaker, J.L., 1990. Breeding systems and genetic improvement of perennial sesbanias. In: Macklin, B. & D.O. Evans (eds.), Perennial Sesbania Species in Agroforestry Systems, pp. 39–44, Nitrogen Fixing Tree Association, Waimanalo.

    Google Scholar 

  • Brewbaker, J.L., M.D. Upadhya, J. Makinen & T. MacDonald, 1968. Isoenzyme polymorphism in flowering plants: III. Gel electrophoretic methods and applications. Physiol. Plant 21: 930–940.

    Google Scholar 

  • Brewer, G.J. & C.F. Sing, 1970. An Introduction to Isozyme Techniques. Academic Press, New York.

    Google Scholar 

  • Carulli, J.P. & D.E. Fairbrothers, 1988. Allozyme variation in three eastern United States species of Aeschynomene (Fabaceae), including the rare A. virginica. Syst. Bot. 13: 559–566.

    Google Scholar 

  • Chamberlain, J.R., C.E. Hughes & N.W. Galwey, 1996. Patterns of isozyme variation in the Leucaena shannonii alliance (Leguminosae:Mimosoideae). Silvae Genet. 45: 1–7.

    Google Scholar 

  • Cruz, C.D & A.J. Regazzi, 1994. Modelos biométricos aplicados ao melhoramento genético. Universidade Federal de Viçosa, Viçosa.

    Google Scholar 

  • Evans, D.O., 1988. Perennial species of Sesbania. Nitrogen Fixing Tree Res. Rep. 6: 73–75.

    Google Scholar 

  • Evans, D.O., 1990. What is Sesbania? Botany, taxonomy, plant geography, and natural history of the perennial members of the genus. In: Macklin, B. & D.O. Evans (eds.), Perennial Sesbania Species in Agroforestry Systems, pp. 5–16, Nitrogen Fixing Tree Association, Waimanalo.

    Google Scholar 

  • Gutteridge, R.C., 1994. The perennial Sesbania species. In: Gutteridge, R.C. & H.M. Shelton (eds.), Forage Tree Legumes in Tropical Agriculture, pp. 49–64, CAB International, Wallingford.

    Google Scholar 

  • Haldane, J.B.S., 1954. An exact test for randomness of mating. J. Genet. 52: 631–635.

    Google Scholar 

  • Hamrick, J.L., 1990. Isozyme and the analysis of genetic structure in plant populations. In: Soltis, D.E. & P.S. Soltis (eds.), Isozymes in Plant Biology, pp.87–105, Chapman and Hall, London.

    Google Scholar 

  • Harris, S.A., C.E. Hughes, R.J. Abbott & R. Ingram, R., 1994. Genetic variation in Leucaena leucocephala (Lam.) de Wit. (Leguminosae:Mimosoideae). Silvae Genet. 43: 159–167.

    Google Scholar 

  • Heering, J.H., 1994. The reproductive biology of three perennial Sesbania species (Leguminosae). Euphytica 74: 143–148.

    Google Scholar 

  • Heering, J.H., J.D. Reed & J. Hanson, 1996. Differences in Sesbania sesban accessions in relation to their phenolic concentration and HPLC fingerprints. J. Sci. Fd Agric. 71: 92–98.

    Google Scholar 

  • Jain, S.K. & R.S. Singh, 1979. Population biology of Avena. VII. Allozyme variation in relation to the genome analysis. Bot. Gaz. 140: 356–362.

    Google Scholar 

  • Kumar, S., K. Tamura & M. Nei, 1993. MEGA — molecular evolutionary analysis. Institute of Molecular Evolutionary Genetics, Pennsylvania State University, PA.

    Google Scholar 

  • Lovato, M.B. & P.S. Martins, 1997. Genetic variability in salt tolerance during germination of Stylosanthes humilis H.B.K. and association between salt tolerance and isozymes. Rev. Brasil. Genet. 20: 435–441.

    Google Scholar 

  • Marcon, G., 1988. Estrutura genética de populações de Stylosanthes humilis H.B.K. (Leguminosae) de tres regiões ecogeográficas do Estado de Pernambuco. Ph.D. Thesis. Escola Superior de Agricultura ‘Luiz de Queiroz’, University of São Paulo, Piracicaba, Brasil.

    Google Scholar 

  • Miller, M.P., 1997. Tools for population genetic analyses (TFPGA). Version 1.3. Northern Arizona University, Flagstaff, AZ.

    Google Scholar 

  • Monteiro, R., 1984. Taxonomic studies on Brazilian legumes with forage potential: Sesbania, Lupinus. Ph.D. Thesis. University of St. Andrews, St. Andrews, UK.

    Google Scholar 

  • Ndoye, I., K. Tomekpe, B. Dreyfus & Y.R. Dommergues, 1990. Sesbania and Rhizobium symbiosis: nodulation and nitrogen fixation. In: Macklin, B. & D.O. Evans (eds.), Perennial Sesbania Species in Agroforestry Systems, pp. 31–38, Nitrogen Fixing Tree Association, Waimanalo.

    Google Scholar 

  • Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323.

    Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Penteado, M.I. de O., L.E. Sáenz de Miera & M. Pérez de la Veja, 1996. Genetic resources of Centrosema spp.: genetic changes associated to the handling of an active collection. Genet. Resour. Crop Evolution 43: 85–90.

    Google Scholar 

  • Penteado, M.I. de O., P. Garcia & M. Pérez de la Veja, 1997. Isozyme markers and genetic variability in three species of Centrosema (Leguminosae). Rev. Brasil. Genet. 20: 443–452.

    Google Scholar 

  • Plumb, V.E., C.D. Wood, C. Gay, J. Hanson & J.H. Heering, 1996. The use of HPLC-derived phenolic profiles as a means of classifying Sesbania accessions. J. Sci. Fd Agric. 70: 481–486.

    Google Scholar 

  • Reis, M.S. dos, 1996. Distribuição e dinâmica da variabilidade genética em populações naturais de palmiteiro (Euterpe edulis Martius). Ph.D. Thesis. Escola Superior de Agricultura ‘Luiz de Queirozd’, University of São Paulo, Piracicaba, Brasil.

    Google Scholar 

  • Ritland, K., 1996. Multilocus mating system program MLTR. Version 1.1. University of Toronto, Toronto.

    Google Scholar 

  • Ritland, K. & S. K. Jain, 1981. A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 47: 35–52.

    Google Scholar 

  • Saraswati, R., T. Matoh, T. Sasai, P. Phupaibul, T.A. Lumpkin, M. Kobayashi & J. Sekiya, 1993. Identification of Sesbania species from electrophoretic patterns of seed proteins. Trop. Agric. 70: 282–285.

    Google Scholar 

  • Scandalios, J.G., 1965. Genetic isozyme variations in Zea mays. Ph.D. Thesis. University of Hawaii, Honolulu.

    Google Scholar 

  • Simpson, M.J.A. & L.A. Withers, 1986. Characterization of plant genetic resources using isozyme electrophoresis: a guide to the literature. International Board For Plant Genetic Resources, Rome.

    Google Scholar 

  • Soltis, D.E. & P.E. Soltis, 1990. Isozymes in Plant Biology. Chapman and Hall, London.

    Google Scholar 

  • Stat Soft Inc., 1996. Statistica forWindows. Release 5.1. (software).

  • Soltis, D.E., C.H. Haufler, D.C. Darrow & G.S. Gastony, 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73: 9–27.

    Google Scholar 

  • Veasey, E.A., E.A. Schammass, R. Vencovsky, P.S. Martins & G. Bandel, 1999. Morphological and agronomical characterization and estimates of genetic parameters of Sesbania Scop. (Leguminosae) accessions. Genet. Mol. Biol. 22: 81–93.

    Google Scholar 

  • Veasey, E.A., E.A. Schammass, R. Vencovsky, P.S. Martins & G. Bandel, 2001. Germplasm characterization of Sesbania accessions based on multivariate analyses. Genet. Resour. Crop Evolution 48: 79–90.

    Google Scholar 

  • Wendel, J.F. & N.F. Weeden, 1990. Visualization and interpretation of plant isozymes. In: Soltis, D.E. & P.S. Soltis (eds.), Isozymes in Plant Biology, pp. 5–45, Chapman and Hall, London.

    Google Scholar 

  • Wright, S., 1978. Evolution and the Genetics of Populations, Vol. 4. University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veasey, E.A., Vencovsky, R., Sodero Martins, P. et al. Germplasm characterization of Sesbania accessions based on isozyme analyses. Genetic Resources and Crop Evolution 49, 449–462 (2002). https://doi.org/10.1023/A:1020998913573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020998913573

Navigation