Skip to main content
Log in

Effect of Interactions Between Amino Acid Residues 43 and 61 on Thermal Stability of Bacterial Formate Dehydrogenases

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

NAD+-dependent formate dehydrogenases (EC 1.2.1.2, FDH) of methylotrophic bacteria Pseudomonas sp. 101 (PseFDH) and Mycobacterium vaccae N10 (MycFDH) exhibit high homology. They differ in two amino acid residues only among a total of 400, i.e., Ile35 and Glu61 in MycFDH substitute for Thr35 and Lys61 as in PseFDH. However, the rate constant for MycFDH thermal inactivation in the temperature range of 54-65°C is 4-6-times higher than the corresponding rate constant for the enzyme from Pseudomonas sp. 101. To clarify the role of these residues in FDH stability the dependence of the apparent rate constant for enzyme inactivation on phosphate concentration was studied. Kinetic and thermodynamic parameters for thermal inactivation were obtained for both recombinant wild-type and mutant forms, i.e., MycFDH Glu61Gln, Glu61Pro, Glu61Lys and PseFDH Lys61Arg. It has been shown that the lower stability of MycFDH compared to that of PseFDH is caused mainly by electrostatic repulsion between Asp43 and Glu61 residues. Replacement of Lys61 with an Arg residue in the PseFDH molecule does not result in an increase in stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rodionov, Yu. V. (1981) Uspekhi Mikrobiol., 16, 104–138.

    Google Scholar 

  2. Popov, V. O., and Lamzin, V. S. (1994) Biochem. J., 301, 625–643.

    Google Scholar 

  3. Vinals, C., Depiereux, E., and Feytmans, E. (1993) Biochem. Biophys. Res. Commun., 192, 182–188.

    Google Scholar 

  4. Egorov, A. M., Avilova, T. V., Dikov, M. M., Popov, V. O., Rodionov, Yu. V., and Berezin, I. V. (1979) Eur. J. Biochem., 99, 569–576.

    Google Scholar 

  5. Asano, Y., Sekigawa, T., Inukai, H., and Nakazawa, A. (1988) J. Bacteriol., 170, 3189–3193.

    Google Scholar 

  6. Iida, M., Kitamura–Kimura, K., Maeda, H., and Mineki, S. (1992) Biosci. Biotech. Biochem., 56, 1966–1970.

    Google Scholar 

  7. Galkin, A., Kulakova, L., Tishkov, V., Esaki, N., and Soda, K. (1995) Appl. Microbiol. Biotechnol., 44, 479–483.

    Google Scholar 

  8. Mitsunaga, T., Tanaka, Y., Yoshida, T., and Watanabe, K. (2000) Japan Patent JP245471A2.

  9. Tishkov, V. I., Galkin, A. G., Marchenko, G. N., Tsygankov, Y. D., and Egorov, A. M. (1993) Biotechnol. Appl. Biochem., 18, 201–207.

    Google Scholar 

  10. Shinoda, T., Satoh, T., Mineki, S., Iida, M., and Taguchi, H. (2002) Biosci. Biotech. Biochem., 66, 271–276.

    Google Scholar 

  11. Barnett, M. J., Fisher, R. F., Jones, T., Komp, C., Abola, A. P., Barloy–Hubler, F., Bowser, L., Capela, D., Galibert, F., Gouzy, J., Gurjal, M., Hong, A., Huizar, L., Hyman, R. W., Kahn, D., Kahn, M. L., Kalman, S., Keating, D. H., Palm, C., Peck, M. C., Surzycki, R., Wells, D. H., Yeh, K.–C., Davis, R. W., Federspiel, N. A., and Long, S. R. (2001) Proc. Natl. Acad. Sci. USA, 98, 9883.

    Google Scholar 

  12. Hollenberg, C. P., and Janowicz, Z. (1989) European Patent EP1987000110417, Bulletin 89/03.

  13. Allen, S. J., and Holbrook, J. J. (1995) Gene, 162, 99–104.

    Google Scholar 

  14. Sakai, Y., Murdanoto, A. P., Konishi, T., Iwamatsu, A., and Kato, N. (1997) J. Bacteriol., 179, 4480–4485.

    Google Scholar 

  15. Slusarczyk, H., Felber, S., Kula, M. R., and Pohl, M. (2000) Eur. J. Biochem., 267, 1280–1289.

    Google Scholar 

  16. Saleeba, J. A., Cobbett, C. S., and Hynes, M. J. (1992) Mol. Gen. Genet., 235, 349–358.

    Google Scholar 

  17. Chow, C. M., and RajBhandary, U. L. (1993) J. Bacteriol., 175, 3703–3709.

    Google Scholar 

  18. Colas des Francs–Small, C., Ambard–Bretteville, F., Small, I. D., and Remy, R. (1993) Plant Physiol., 102, 1171–1177.

    Google Scholar 

  19. Suzuki, K., Itai, R., Suzuki, K., Nakanishi, H., Nishizawa, N. K., Yoshimura, E., and Mori, S. (1998) Plant Physiol., 116, 725–732.

    Google Scholar 

  20. Lamzin, V. S., Dauter, Z., Popov, V. O., Harutyunyan, E. H., and Wilson, K. S. (1994) J. Mol. Biol., 236, 759–785.

    Google Scholar 

  21. Galkin, A. G., Kutsenko, A. S., Bajulina, N. P., Esipova, N. G., Lamzin, V. S., Mezentzev, A. V., Shelukho, D. V., Tikhonova, T. V., Tishkov, V. I., Ustinnikova, T. B., and Popov, V. O. (2002) Biochim. Biophys. Acta, 1594, 136–149.

    Google Scholar 

  22. Tishkov, V. I., Galkin, A. G., Gladyshev, V. N., Karzanov, V. V., and Egorov, A. M. (1992) Biotekhnologiya, No. 5, 52–59.

  23. Rodionova, Yu. V., Avilova, T. V., and Popov, V. O. (1977) Biokhimiya, 43, 2020–2026.

    Google Scholar 

  24. Menendez–Arias, L., and Argos, P. (1989) J. Mol. Biol., 206, 397–406.

    Google Scholar 

  25. Cornish–Bowden, A. (1976) Principles of Enzyme Kinetics, Chap. 1, Butterworth & Co, London–Boston.

    Google Scholar 

  26. Rojkova, A. M., Galkin, A. G., Kulakova, L. B., Serov, A. E., Savitsky, P. A., Fedorchuk, V. V., and Tishkov, V. I. (1999) FEBS Lett., 445, 183–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Tishkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorchuk, V.V., Galkin, A.G., Yasny, I.E. et al. Effect of Interactions Between Amino Acid Residues 43 and 61 on Thermal Stability of Bacterial Formate Dehydrogenases. Biochemistry (Moscow) 67, 1145–1151 (2002). https://doi.org/10.1023/A:1020915324159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020915324159

Navigation