Skip to main content
Log in

Implication of distinct proteins in cadmium uptake and transport by intestinal cells HT-29

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The mechanisms of intestinal absorption have not been clearly elucidated for cadmium, a toxic metal. In this work, we show the implication of distinct proteins in cadmium transport, and the transport step where these proteins are involved. We first validated the HT-29 model by evaluating nontoxic doses of cadmium (ranging from 1 to 20 μmol/L), and by quantifying metal uptake and transepithelial transport. The time-course of 1 μmol/L cadmium uptake at pH 7.5 showed three steps: a rapid one during the first 4 min, probably due to cadmium binding to the membrane; a slower one, characterized by K m of 1.65±0.54 μmol/L and V max of 3.9±0.3 pmol/min per mg protein; and a third, corresponding to slow accumulation that was not equilibrated even after 48 h of cadmium exposure. Intracellular metallothionein content following 1 or 5 μmol/L cadmium exposure showed a significant increase after 6 h of exposure, and was not equilibrated even after 72 h, allowing cadmium accumulation. After 24 h of exposure, metallothionein content was 5-fold, 14-fold, 26-fold, and 50-fold, respectively, for cells grown in the presence of 1, 5, 10, and 20 μmol/L cadmium, compared to control cells. The second step of uptake, characterized by carrier-mediated transport, was markedly increased at pH 5.5, compared to pH 7.5, and strongly inhibited by the metabolic inhibitor dinitrophenol. Moreover Nramp2 transporter cDNA was present in HT-29 cells. These data suggest the involvement of a proton-coupled transporter, which may be the divalent cation transporter Nramp2 (natural resistance-associated macrophage protein 2). Cadmium uptake was also inhibited by copper, zinc, and para-chloromercuribenzenesulfonate (pCMBS), but not by verapamil or ouabain. Taken together, our results indicate that cadmium could enter HT-29 cell by Nramp2 proton-coupled active transport and by diffusion, and accumulates in the cell as long as it binds to metallothionein. Cadmium toxicity could depend partly on the activity of Nramp2, and partly on metallothionein content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen O, Nielsen JB, Sorensen JA, Scherrebeck L. Experi-mental localization of intestinal uptake sites for metals (Cd, Hg, Zn, Se) in vivo in mice. Environ Health Perspect. 1994;102:199-206.

    PubMed  CAS  Google Scholar 

  • Bhattacharyya MH, Wilson AK, Silbergeld EK, Watson L, Jeffery E. Metal-induced osteotoxicities. In: Goyer RA, Klaassen CD, Waalkes MP, eds. Metal toxicology. San Diego: Academic Press; 1995:465-510.

    Google Scholar 

  • Blais A, Aymard P, Lacour B. Paracellular calcium transport across Caco-2 and HT29 cell monolayers. Eur J Physiol. 1997;434:300-5.

    Article  CAS  Google Scholar 

  • Blais A, Lecoeur S, Milhaud G, Tomé D, Kolf-Clauw M. Cadmium uptake and transepithelial transport in control and long-term exposed Caco-2 cells: the role of metallothio-nein. Toxicol Appl Pharmacol. 1999;160:76-85.

    Article  PubMed  CAS  Google Scholar 

  • Bobilya DJ, Briske Anderson M, Reeves PG. Zinc transport into endothelial cells is a facilitated process. J Cell Physiol. 1992;151:1-7.

    Article  PubMed  CAS  Google Scholar 

  • Danielson KG, Ohi S, Huang PC. Immunochemical detection of metallothionein in specific epithelial cells or rat organs. Proc Natl Acad Sci USA. 1982;79:2301-4.

    Article  PubMed  CAS  Google Scholar 

  • Dressman JB, Berardi RR, Dermentzoglou LC, et al. Upper gastrointestinal pH in young, healthy men and women. Pharm Res. 1990;7:756-61.

    Article  PubMed  CAS  Google Scholar 

  • Duizer E, Gilde AJ, Versantvoort CHM, Groten JP. Effects of cadmium chloride on the paracellular barrier function of intestinal cell lines. Toxicol Appl Pharmacol. 1999;155:117-26.

    Article  PubMed  CAS  Google Scholar 

  • Elisma F, Jumarie C. Evidence for cadmium uptake through Nramp2: metal speciation studies with Caco-2 cells. Bio-chem Biophys Res Commun. 2001;285:662-8.

    Article  CAS  Google Scholar 

  • Elsenhans B, Kolb K, Schymann K, Forth W. The longitudinal distribution of cadmium, zinc, copper, iron, and metal-lothionein in the small-intestinal mucosa of rats after administration of cadmium chloride. Biol Trace Elem Res. 1994;41:31-46.

    PubMed  CAS  Google Scholar 

  • Elsenhans B, Strugala GJ, Schäfer SG. Small-intestinal absorp-tion of cadmium and the significance of mucosal metal-lothionein. Hum Exp Toxicol. 1997;16:429-34.

    PubMed  CAS  Google Scholar 

  • Endo T, Kimura O, Sakata M. Effects of zinc and copper on uptake of cadmium by LLC-PK1 cells. Biol Pharm Bull. 1996;19:944-8.

    PubMed  CAS  Google Scholar 

  • Endo T. Transport of cadmium across the apical membrane of epithelial cell lines. Comp Biochem Physiol C Toxicol Pharmacol. 2002;131:223-9.

    Article  PubMed  Google Scholar 

  • Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurements of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29:1035-41.

    PubMed  CAS  Google Scholar 

  • Fogh J, Fogh JM, Orfeo T. One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice. J Natl Canc Inst. 1977;59:221-6.

    CAS  Google Scholar 

  • Foulkes EC. On the mechanism of transfer of heavy metals across cell membranes. Toxicology. 1988;52:263-72.

    Article  PubMed  CAS  Google Scholar 

  • Foulkes EC. Further findings on the mechanism of cadmium uptake by intestinal mucosal cells (step 1 of Cd absorption). Toxicology. 1991;70:261-70.

    Article  PubMed  CAS  Google Scholar 

  • Foulkes EC, Bergman D. Inorganic mercury absorption in mature and immature rat jejunum: transcellular and inter-cellular pathways in vivo and everted sacs. Toxicol Appl Pharmacol. 1993;120:89-95.

    Article  PubMed  CAS  Google Scholar 

  • Foulkes EC, MacMullen DM. Kinetics of trans-epithelial movement of heavy metals in rat jejunum. Am J Physiol. 1987;253:134-8.

    Google Scholar 

  • Friberg L, Kjellström T, Nordberg GF. Cadmium. In: Friberg L, Nordberg GF, Vouk VB, eds. Handbook on the toxicol-ogy of metals. Amsterdam: Elsevier; 1986:II:130-75.

    Google Scholar 

  • Goering PL, Waalkes MP, Klaassen CD. Toxicology of cad-mium. In: Goyer RA, Cherian MG, eds. Toxicology of metals: biochemical aspects. Handbook of experimental pharmacology. New York: Springer-Verlag; 1995:115:189-213.

    Google Scholar 

  • Goon D, Klaassen CD. Dosage-dependent absorption of cadmium in the rat intestine measured in situ. Toxicol Appl Pharmacol. 1989;100:41-50.

    Article  PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388: 482-8.

    Article  PubMed  CAS  Google Scholar 

  • Han O, Fleet JC, Wood RJ. Reciprocal regulation of HFE and Nramp2 gene expression by iron in human intestinal cells. J Nutr. 1999;129:98-104.

    PubMed  CAS  Google Scholar 

  • Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure: a review of literature and a risk estimate. Scand J Work Environ Health. 1998; 24:1-51.

    PubMed  Google Scholar 

  • Jin N, Kimura M, Yokoi K, Itokawa Y. A gel filtration high-performance liquid chromatographic method for determi-nation of hepatic and renal metallothionein of rat and in comparison with the cadmium-saturation method. Biol Trace Elem Res. 1993;36:183-90.

    PubMed  CAS  Google Scholar 

  • Jumarie C, Campbell PGC, Berteloot A, Houde M, Denizeau F. Caco-2 cell line used as an in vitro model to study cadmium accumulation in intestinal epithelial cells. J Membr Biol. 1997;158:31-48.

    Article  PubMed  CAS  Google Scholar 

  • Jumarie C, Campbell PGC, Houde M, Denizeau F. Evidence for an intracellular barrier to cadmium transport through Caco-2 cell monolayers. J Cell Physiol. 1999;180:285-97.

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Liu J. Role of metallothionein in cadmium-induced hepatotoxicity and nephrotoxicity. Drug Metab Rev. 1997;29:79-102.

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S. Metallothionein: an intra-cellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol. 1999;39:267-94.

    Article  PubMed  CAS  Google Scholar 

  • Lind Y, Wicklund Glynn A. The involvement of metallothio-nein in the intestinal absorption of cadmium in mice. Toxicol Lett. 1997;91:179-87.

    Article  PubMed  CAS  Google Scholar 

  • Min KS, Fujita Y, Onosaka S, Tanaka K. Role of intestinal metallothionein in absorption and distribution of orally administered cadmium. Toxicol Appl Pharmacol. 1991;109: 7-16.

    Article  PubMed  CAS  Google Scholar 

  • Min KS, Nakatsubo T, Kawamura S, Fujita Y, Onosaka S, Tanaka K. Effects of mucosal metallothionein in small intestine on tissue distribution of cadmium after oral administration of cadmium compounds. Toxicol Appl Phar-macol. 1992;113:306-10.

    Article  CAS  Google Scholar 

  • Mitchell DB, Santone KS, Acosta D. Evaluation of cytotoxicity in cultured cells by enzyme leakage. J Tissue Cult Methods. 1980;6:113-17.

    Article  CAS  Google Scholar 

  • Morselt AF. Environmental pollutants and diseases. A cell biological approach using chronic cadmium exposure in the animal model as a paradigm case. Toxicology. 1991;70: 1-132.

    Article  PubMed  CAS  Google Scholar 

  • Niewenhuis RJ, Dimitriu C, Prozialeck WC. Ultrastructural characterization of the early changes in intercellular junc-tions in response to cadmium (Cd2+) exposure in LLC-PK1 cells. Toxicol Appl Pharmacol. 1997;142:1-12.

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Cherian MG. Gastrointestinal absorption of cadmium and metallothionein. Toxicol Appl Pharmacol. 1991;107: 63-72.

    Article  PubMed  CAS  Google Scholar 

  • Phillpotts CJ. The autoradiographic localisation of retained orally administrated tracer within Paneth cells of rat duo-denum. Toxicology. 1984;33:59-66.

    Article  PubMed  CAS  Google Scholar 

  • Pigman EA, Blanchard J, Laird HE. A study of cadmium transport pathways using the Caco-2 cell model. Toxicol Appl Pharmacol. 1997;142:243-7.

    Article  PubMed  CAS  Google Scholar 

  • Pinot F, Kreps SE, Bachelet M, Hainaut P, Bakonyi M, Polla BS. Cadmium in the environnement: sources, mechanisms of biotoxicity, and biomarkers. Rev Environ Health. 2000; 15:299-323.

    PubMed  CAS  Google Scholar 

  • Rindley MJ, Traber MG. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal cells. J Cell Biol. 1988; 107:471-9.

    Article  Google Scholar 

  • Satarug S, Haswell-Elkins MR, Moore MR. Safe levels of cadmium intake to prevent renal toxicity in human subjects. Br J Nutr. 2000;84:791-802.

    PubMed  CAS  Google Scholar 

  • Saito S, Kojima Y. Differential role of metallothionein on Zn, Cd and Cu accumulation in hepatic cytosol of rats. CellMol Life Sci. 1997;53:267-70.

    Article  CAS  Google Scholar 

  • Scarino ML, Poverini R, Di Lullo G, Bises G. Metallothionein gene expression in the intestinal cell: modulation of mRNA and protein synthesis by copper and zinc. Biochem Soc Trans. 1991;19:283s-91s.

    PubMed  CAS  Google Scholar 

  • Slotki IN, Breuer WV, Greger R, Cabantchik ZI. Long-term cAMP activation of Na+-K+-2Cl--cotransporter activity in HT-29 human adenocarcinoma cells. J Am Physiol Soc. 1993;82:857-65.

    Google Scholar 

  • Sorensen JA, Nielsen JB, Andersen O. Identification of the gastrointestinal absorption site for cadmium chloride in vivo. Pharmacol Toxicol. 1993;73:169-73.

    Article  PubMed  CAS  Google Scholar 

  • Tandy S, Williams M, Leggett A, et al. Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J Biol Chem. 2000;275:1023-9.

    Article  PubMed  CAS  Google Scholar 

  • Thévenod F, Friedmann JM, Katsen AD, Hauser IA. Up-regulation of multidrug resistance P-glycoprotein via nucle-ar factor-kB activation protects kidney proximal tubule cells from cadmium-and reactive oxygen species-induced apop-tosis. J Biol Chem. 2000;275:1887-96.

    Article  PubMed  Google Scholar 

  • Turner JT, Franklin CC, Bollinger DW, Kim HD. Vasoactive intestinal peptide stimulates active K+ transport and Na+K+Cl--cotransport in HT-29 cells. J Biol Chem. 1989; 264:6667-74.

    PubMed  Google Scholar 

  • Velcich A, Palumbo L, Jarry A, Laboisse C, Racevskis J, Augenlicht L. Patterns of expression of lineage-specific markers during the in vitro-induced differentiation of HT29 colon carcinoma cells. Cell Growth Differ. 1995;6:749-57.

    PubMed  CAS  Google Scholar 

  • Viallard V, Denis C, Trocheris V, Murat JC. Effect of glutamine deprivation and glutamate or ammonium chloride addition on growth rate, metabolism and differentiation of human colon cancer cell-line HT29. Int J Biochem. 1986;18:263-9.

    Article  PubMed  CAS  Google Scholar 

  • Waalkes MP, Misra RR. Cadmium carcinogenicity and geno-toxicity. In: Chang L, ed. Toxicology of metals. Boca Raton, FL: CRC Press; 1996:231-44.

    Google Scholar 

  • Webb M. The chemistry, biochemistry and biology of cadmium: Amsterdam: Elsevier; 1979.

    Google Scholar 

  • Zoller H, Pietrangelo A, Vogel W, Weiss G. Duodenal metal-transporter (DMT-1, NRAMP-2) expression in patients with hereditary haemochromatosis. Lancet. 1999;353: 2120-3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecoeur, S., Huynh-Delerme, C., Blais, A. et al. Implication of distinct proteins in cadmium uptake and transport by intestinal cells HT-29. Cell Biol Toxicol 18, 409–423 (2002). https://doi.org/10.1023/A:1020867707079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020867707079

Navigation