Skip to main content
Log in

Alanine Prevents the Reduction of Pyruvate Kinase Activity in Brain Cortex of Rats Subjected to Chemically Induced Hyperphenylalaninemia

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The mechanisms by which phenylalanine is toxic to the brain in phenylketonuria are not fully understood. Considering that brain glucose metabolism is reduced in these patients, our main objective was to determine pyruvate kinase activity in brain cortex of rats subjected to acute and chronic chemically induced hyperphenylalaninemia. The effect of alanine administration on the enzyme activity in the treated rats was also investigated. We also studied the in vitro effect of the two amino acids on pyruvate kinase activity in brain cortex of nontreated rats. The results indicated that phenylalanine inhibits pyruvate kinase in vitro and in vivo and that alanine prevents the inhibitory effect of phenylalanine on the enzyme activity. Considering the crucial role pyruvate kinase plays in glucose metabolism in brain, it is possible that inhibition of this enzyme activity may contribute to the brain damage characteristic of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Blascovics, M. E., Scheffler, G. E., and Hacks, S. 1974. Phenylalaninemia: Differential diagnosis. Arch. Dis. Child. 49:835-843.

    Google Scholar 

  2. Scriver, C. R. and Kaufman, S. 2001. Hyperphenylalaninemia: Phenylalanine hydroxylase deficiency. Pages 1667-1724, in Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds): The Metabolic & Molecular Bases of Inherited Diseases, 8th ed., McGraw-Hill, New York.

    Google Scholar 

  3. Holtzman, N. A., Kronmal, R. A., van Doominck W., Azen C., and Koch, R. 1986. Effect of age at loss of dietary control on intellectual performance and behavior of children with phenylketonuria, New Engl. J. Med. 314:593-598.

    Google Scholar 

  4. Smith, I., Beasley M. G., and Ades, A. E. 1990. Intelligence and quality of dietary treatment in phenylketonuria. Arch. Dis. Child. 65:472-478.

    Google Scholar 

  5. Lou, H. C., Güttler F., Lykkelund C., and Niederwieser A. 1985. Decreased vigilance and neurotransmitter synthesis after discontinuation of dietary treatment of phenylketonuria in adolescents. Eur. J. Pediatr. 144:17-29.

    Google Scholar 

  6. Clarke, J. T., Gates, R. T., Hogan, S. E., Barrett, M., and MacDonald, G. W. 1987. Neuropsychological studies on adolescents with phenylketonuria returned to phenylalanine-restricted diets. Am. J. Ment. Retard. 92:255-262.

    Google Scholar 

  7. Krause, W., Halminski, M., McDonald, L., Dembure, P., and Salvo, R. 1985. Biochemical and neuropsychological effects of elevated plasma phenylalanine in patients with treated phenylketonuria: A model for the study of phenylalanine and brain function in man. J. Clin. Invest. 75:40-48.

    Google Scholar 

  8. Weglage, J., Pietsch, M., Fünders, B., Koch, H. G., and Ullrich, K. 1995. Neurological findings in early treated phenylketonuria. Acta Pediatr. 84:411-415.

    Google Scholar 

  9. Cleary, M. A., Walter, J. H., Wraith, J. E., Jenkins, J. P., Alani, S. M., Tyler, K., and Whittle, D. 1994. Magnetic resonance imaging of the brain in phenylketonuria. Lancet 344:87-90.

    Google Scholar 

  10. Bick, U., Ullrich, K., Stöber, U., Möller, H., Schuierer, G., Ludolph, A. C., Oberwittler, C., Weglage, J., and Wendelm, U. 1993. White matter abnormalities in patients with treated hyperphenylalaninemia: Magnetic resonance relaxometry and proton spectroscopy findings. Eur. J. Pediatr. 152:1012-1020.

    Google Scholar 

  11. Erecinska, M., Nelson, D., Nissim, I., Daikhin, Y., and Yudkoff, M. 1994. Cerebral alanine transport and alanine aminotransferase reaction: Alanine as a source of glutamate. J. Neurochem. 62:1953-1964.

    Google Scholar 

  12. Balász, R. 1965. Control of glutamate metabolism: The effect of pyruvate. J. Neurochem. 12:63-67.

    Google Scholar 

  13. BaÑos, G., Daniel, P. M., and Pratt, O. E. 1978. The effect of age upon the entry of some amino acids into the brain and its incorporation into cerebral protein. Develop. Med. Child Neurol. 20:335-346.

    Google Scholar 

  14. Marsden, D., Barshop, B. A., Capistrano-Estrada, S., Rice, M., Prodanus, C., Sartoris, D., Wolff, J., Jones, K. L., Spector, S., and Nyhan, W. L. 1994. Anabolic effect of human hormone: Management of inherited disorders of catabolic pathways. Biochem. Med. Metab. Biol. 52:145-154.

    Google Scholar 

  15. Wyse, A. T. S., Bolognesi, G., Brusque, A. M., Wajner, M., and Wannmacher, C. M. D. 1995. Na+, K+-ATPase activity in the synaptic plasma membrane from the cerebral cortex of rats subjected to chemically induced phenylketonuria. Med. Sci. Res. 23:261-262.

    Google Scholar 

  16. Wyse, A. T. S., Wajner, M., and Wannmacher, C. M. D. 1998. Kinetics of alanine reversal on the inhibition of Na+, K+-ATPase activity by phenylalanine and phenyllactate in the synaptic plasma membrane from the cerebral cortex of rats. Med. Sci. Res. 26:141-143.

    Google Scholar 

  17. Wyse, A. T. S., Noriler, M. E., Borges, L. F., Floriano, P. J., Silva, C. G., Wajner, M., and Wannmacher, C. M. D. 1999. Alanine prevents the decrease of Na+, K+-ATPase activity in experimental phenylketonuria. Metab. Brain Dis. 14:95-101.

    Google Scholar 

  18. De Freitas, M. S., de Mattos, A. G., Camargo, M. M., Wannmacher, C. M. D., and Pessoa-Pureur, R. 1995. Effect of phenylalanine and α-methylphenylalanine on in vitro incorporation of 32P into cytoskeletal cerebral proteins. Neurochem. Int. 26:381-385.

    Google Scholar 

  19. De Freitas, M. S., Mattos-Dutra, A., Schroder, N., Wannmacher, C. M. D., and Pessoa-Pureur, R. 1997. Effect of hyperphenylalaninemia chemically induced on in vitro incorporation of 32P into cytoskeletal proteins from cerebral cortex of developing rats. Exper. Neurol. 143:188-195.

    Google Scholar 

  20. Carreras, A. L. R., Mattos-Dutra, A., Meirelles, R., Rocha, B. B., Wannmacher, C. M. D., and Pessoa-Pureur, R. 2000. Phenylalanine inhibition of the phosphorylation of cytoskeletal proteins from cerebral cortex of young rats is prevented by alanine. Eur. J. Clin. Invest, 30:536-542.

    Google Scholar 

  21. Weber, G. 1969. Inhibition of human brain pyruvate kinase and hexokinase by phenylalanine and phenylpiruvate: Possible relevance to phenylketonuric brain damage. Proc. Natl. Acad. Sci. USA 63:1365-1369.

    Google Scholar 

  22. Chainy, G. B. N. and Kanungo, M. S. 1978. Induction and properties of pyruvate kinase of the cerebral hemisphere of rats of various ages. J. Neurochem. 30:419-427.

    Google Scholar 

  23. Rodrigues, N. R., Wannmacher, C. M. D., Dutra-Filho, C. S., Pires, R. F., Fagan, P. R., and Wajner, M. 1990. Effect of phenylalanine, p-chlorophenylalanine and α-methylphenylalanine on glucose uptake in vitro by the brain of young rats. Biochem. Soc. Trans. 18:419.

    Google Scholar 

  24. Hasselbach, S., Knudsen, G. M., Toft, P. B., Hogh, P., Tedeschi, E., Holm, S., Videbaek, C., Henriksen, O., Lou, H. C., and Paulson, O. B. 1996. Cerebral glucose metabolism is decreased in white matter changes in patients with phenylketonuria. Pediatr. Res. 40:21-24.

    Google Scholar 

  25. Cespedes, C., Thoene, J. G., Lower, K., and Christensen, H. N. 1989. Evidence of inhibition of exodus of small neutral amino acids from non-brain tissues in hyperphenylalaninemic rats. J. Inher. Metab. Dis. 12:166-180.

    Google Scholar 

  26. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.

    Google Scholar 

  27. Leong, S. F., Lai, J. C. K., Lim, L., and Clark, J. B. 1981. Energy-metabolising enzymes in brain regions of adult and aging rats. J. Neurochem. 37:1548-1556.

    Google Scholar 

  28. Möller, H., Weglage, J., Wiedermann, D., Vermathen, P., Bick, U., and Ullrich, K. 1997. Kinetics of phenylalanine transport at the human blood-brain barrier investigated in vivo. Brain Res. 778:329-337.

    Google Scholar 

  29. Avison, M. J., Herschkowitz, N., Novotny, E. J., Petroff, O. A. C., Rothman, D. L., Colombo, J. P., Bachmann, C., Shulamn, R. G., and Princhard, J. W. 1990. Proton NMR observation of phenylalanine and an aromatic metabolite in the rabbit brain in vivo. Pediatr. Res. 27:566-570.

    Google Scholar 

  30. Clark, J. B., Bates, T. E., Cullingford, T., and Land, J. M. 1993. Development of enzymes of energy metabolism in the neonatal mammalian brain. Dev. Neurosci. 15:174-180.

    Google Scholar 

  31. Dobbing J. and Sands, J. 1979. Comparative aspects of the brain growth spurt. Early Hum. Dev. 3:79-84.

    Google Scholar 

  32. Girard, J., Ferre, P., Pegorier, J. P., and Duce, P. H. 1992. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol. Rev. 72:507-562.

    Google Scholar 

  33. Himwich, H. E. 1951. Brain metabolism and cerebral disorders, Willians and Wilkins Baltimore.

    Google Scholar 

  34. Beal, M. F. 2000. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 23:298-304.

    Google Scholar 

  35. Schinder, A. F., Olson, E. C., Spitzer, N. C., and Montal, M. 1996. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16:6125-6133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feksa, L.R., Cornelio, A.R., Rech, V.C. et al. Alanine Prevents the Reduction of Pyruvate Kinase Activity in Brain Cortex of Rats Subjected to Chemically Induced Hyperphenylalaninemia. Neurochem Res 27, 947–952 (2002). https://doi.org/10.1023/A:1020351800882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020351800882

Navigation