Skip to main content
Log in

Asexual production of selectable marker-free transgenic woody plants, vegetatively propagated species

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

We describe here a practical system for generating selectable marker-free transgenic woody plants independent of sexual crossing. We previously reported that the GST-MAT vector system could produce marker-free transgenic tobacco plants containing a single-copy transgene at high frequency. The GST-MAT vector system consists of a DNA excision cassette of the R/RS site-specific recombination system from Zygosaccharomyces rouxii into which the isopentenyltransferase gene from Agrobacterium tumefaciens has been inserted. In this study, we applied this new GST-MAT vector to hybrid aspen (Populus Sieboldii X Populus grandidentata), a model of vegetatively propagated plant species, to produce selectable marker-free transgenic woody plants. In the new GST-MAT vector, the chimeric ipt gene fused with a light-inducible rbcS promoter efficiently produced transgenic ipt-shooty with GUS activity from 38.0% of infected stems. Upon excision of the R and ipt genes between RS sites, regulated by the inducible promoter of the maize glutathione-S-transferase (GST-II-27) gene, 3 (21.4%) transgenic hybrid aspen plants with marker-free and normal phenotype were generated from 14 ipt-shooty lines within 2 months after cutting induction. These results suggest that the MAT-vector system might be useful for removing a selectable marker gene independent of sexual crossing in vegetatively propagated species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyoshi D.E., Klee H., Amasino R.M., Nester E.W. and Gordon M.P. 1984. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA 81: 5994-5998.

    PubMed  Google Scholar 

  • Barry G.F., Rogers S.G., Fraley R.T. and Brand L. 1984. Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci. USA 81: 4776-4780.

    Google Scholar 

  • Doyle J.J. and Doyle J.L. 1989. Isolation of plant DNA from fresh tissue. FOCUS 12: 13-15.

    Google Scholar 

  • Ebinuma H., Sugita K., Matsunaga E. and Yamakado M. 1997a. Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marker. Proc. Natl. Acad. Sci. USA 94: 2117-2121.

    PubMed  Google Scholar 

  • Ebinuma H., Sugita K., Matsunaga E., Yamakado M. and Komamine A. 1997b. Principle of MAT vector. Plant Biotech 14: 133-139.

    Google Scholar 

  • Ebinuma H., Sugita K., Matsunaga E., Endo S. and Kasahara H. 2000. Selection of marker-free transgenic plants using the oncogenes (IPT, ROL A,B,C) of Agrobacterium as selectable markers. In: Jain S.M. and Minocha S.C. (eds), Molecular Biology of Woody Plants II. Kluwer Academic Publishers, The Netherlands, pp. 25-46.

    Google Scholar 

  • Ebinuma H., Sugita K., Matsunaga E., Endo S., Yamada K. and Komamine A. 2001. System for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20: 383-392.

    Google Scholar 

  • Ebinuma H. and Komamine A. 2001. MAT (Multi-Auto-Transformation) vector. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell. Dev. Biol 37: 103-113.

    Google Scholar 

  • Ebinuma H., Sugita K., Matsunaga E., Endo S. and Yamada K. 2002. GST-MAT vector for the efficient and practical removal of marker genes from transgenic plants. In: Jackson J.F., Linskens H.F. and Inman R.B. (eds), Molecular methods of plant analysis. Vol. “Testing for genetic manipulation.”. Springer-Verlag GmbH & Co., Heidelberg, KG, Germany (in press).

    Google Scholar 

  • Endo S., Sugita K., Sakai M. and Tanaka Hand Ebinuma H. 2002. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J 30: 115-122.

    PubMed  Google Scholar 

  • Endo S., Kasahara T., Sugita K. and Ebinuma H. 2002. A new GST-MAT vector containing both the ipt gene and the iaaM/H genes can produce marker-free transgenic plants with high frequency. Plant Cell Rep 20: 923-928.

    Google Scholar 

  • Flores S. and Tobin E.M. 1986. Benzyladenine modulation of the expression of two genes for nuclear-encoded chloroplast proteins in Lemna bibba: Apparent post-transcriptional regulation. Planta 168: 340-349.

    Google Scholar 

  • Gleave A.P., Mitra D.S., Mudge S.R. and Morris B.A.M. 1999. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40: 223-235.

    PubMed  Google Scholar 

  • Haldrup A., Petersen S.G. and Okkels F.T. 1998. Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep. 18: 76-81.

    Google Scholar 

  • Hoekema A., Hirsch P.R., Hooykaas P.J.J. and Schilperoort R.A. 1983. A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179-180.

    Google Scholar 

  • Jefferson R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387-405.

    Google Scholar 

  • Joersbo M. and Okkels F.T. 1996. A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep. 16: 219-221.

    Google Scholar 

  • John M.C. and Amasino R.M. 1989. Extensive change in DNA methylation patterns accompany activation of a silent T-DNA ipt gene in Agrobacterium tumefaciens-transformed plant cells. Mol. Cell. Biol. 9: 4298-4303.

    PubMed  Google Scholar 

  • Lerbs W., Lerbs S., Klyachko N.L., Romanko E.G., Kulaeva O.N., Wollgiehn R. et al. 1984. Gene expression in cytokinin-and light-mediated plastogenesis of Cucurbita cotyledons: ribulose-1,5-bisphosphate carboxylase/oxygenase. Planta 162: 289-298.

    Google Scholar 

  • Maniatis T., Fritsch E.F. and Sambrook J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Matsuzaki H., Nakajima R., Nishiyama J., Araki H. and Oshima Y. 1990. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J. Bacteriol. 172: 610-618.

    PubMed  Google Scholar 

  • Matzke M., Matzke A.J.M. and Scheid O.M. 1994. Inactivation of repeated genes-DNA-DNA interaction? In: Paszkowski J. (ed.), Homologous Recombination and Gene Silencing in Plants. Kluwer Academic Publishers, the Netherlands, pp. 271-307.

    Google Scholar 

  • Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15: 473-497.

    Google Scholar 

  • Nagel R., Elliott A., Masel A., Bircch R.G. and Manners J.M. 1990. Electroporation of binary Ti plasmid vector into Agrobacterium tumefaciens and Agrobacterium rhizogenes. FEMS Microbiol. Lett. 67: 325-328.

    Google Scholar 

  • Qin M., Bayley C., Stockton T. and Ow D.W. 1994. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc. Natl. Acad. Sci. USA 91: 1706-1710.

    PubMed  Google Scholar 

  • Smigocki A.C. and Owens L.D. 1988. Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc. Natl. Acad. Sci. USA 85: 5131-5135.

    Google Scholar 

  • Sugita M., Manzara T., Pichersky E., Cashmore A. and Gruissem W. 1987. Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato. Mol. Gen. Genet. 209: 247-256.

    PubMed  Google Scholar 

  • Sugita K., Matsunaga E. and Ebinuma H. 1999. Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Reports 18: 941-947.

    Google Scholar 

  • Sugita K., Kasahara T., Matsunaga E. and Ebinuma H. 2000a. The transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J. 22: 461-468.

    PubMed  Google Scholar 

  • Sugita K., Kasahara T., Matsunaga E. and Ebinuma H. 2000b. Transgene stacking in plants in the absence of sexual crossing. Molecular Breeding 6: 529-536.

    Google Scholar 

  • Tzfira T., Jensen C.S., Wang W., Zuker A., Vinocur B., Altman A. et al. 1997. Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Mol. Biol. Rep. 15: 219-235.

    Google Scholar 

  • Yoder J.I. and Goldsbrough A.P. 1994. Transformation systems for generating marker-free transgenic plants. Bio/Technology 12: 263-267.

    Article  Google Scholar 

  • Zubko E., Scutt C. and Meyer R. 2000. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat/Biotech 18: 442-445.

    Google Scholar 

  • Zuo J., Niu S.G., Møller Q.W. and Chua N.H. 2001. Chemicalregulated, site-specific DNA excision in transgenic plants. Nat/Biotech 19: 157-161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Ebinuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsunaga, E., Sugita, K. & Ebinuma, H. Asexual production of selectable marker-free transgenic woody plants, vegetatively propagated species. Molecular Breeding 10, 95–106 (2002). https://doi.org/10.1023/A:1020308216747

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020308216747

Navigation