Skip to main content
Log in

Computation of normal forms of Hamiltonian systems in the presence of Poisson commuting integrals

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The aim of this paper is to show the role of first integrals in further reducing the normal form unfolding of Hamiltonian systems. Based on a work by Cicogna and Gaeta, the joint normal form approach for Hamiltonian vector fields is considered. This normal form procedure, couched in a Lie-Poincaré scheme, allows us to see that we can reduce simultaneously the Hamiltonian together with its Poisson commuting integrals to a simplified normal form - a joint normal form - which is given a simple characterization. In this algorithmic procedure, approximate first integrals can be constructed (and used to simplify the normal form) at the same time that we bring the Hamiltonian to normal form. Further, following Walcher, we show that we can derive the joint normal form via a structure preserving transformation (in a sense to be specified). The approach is discussed from an implementational standpoint and illustrated by a Liouville-integrable Hénon-Heiles system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.I. Arnold and D.V. Anosov, Dynamical Systems I (Springer, Berlin, 1988).

    Google Scholar 

  2. S. Benbachir, Research of periodic solutions of the nonintegrable H´enon-Heiles system by the Lindstedt-Poincar´e method, J. Phys. A 31 (1998) 5083–5103.

    Article  MATH  MathSciNet  Google Scholar 

  3. G.D. Birkhoff, Dynamical Systems, 2nd ed., Colloq. Publ. 9 (Amer. Math. Soc., Providence, RI, 1927) 54.

  4. A.D. Bruno (Brjuno), Analytical form of differential equations II, Trans. Moscow Math. Soc. 26 (1972) 199–239.

    MATH  Google Scholar 

  5. A.D. Bruno, Local Method in Nonlinear Differential Equations (Springer, Berlin, 1989).

    Google Scholar 

  6. A.D. Bruno, The Restricted Three-Body Problem: Plane Periodic Orbits (Nauka, Moscow, 1990) (in Russian).

    Google Scholar 

  7. A.D. Bruno and S. Walcher, Symmetries and convergence of normalizing transformations, J. Math. Anal. Appl. 183 (1994) 571–576.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Celletti and A. Giorgilli, On the stability of the Lagrangian points in the spacial restricted three body problem, Celest. Mech. 50 (1991) 31–58.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Chen and J. Della Dora, Rational normal forms by Carleman linearization, to appear in: Proc. of the 1999 Internat. Symp. on Symbolic and Algebraic Computation, Vancouver, Canada (July 28–31, 1999).

  10. G. Chen, J. Della Dora and L. Stolovitch, Nilpotent normal forms via Carleman linearization for ODE, in: Proc. of the 1991 Internat. Symp. on Symbolic and Algebraic Computation, ed. M. Bronstein (ACM, New York, 1991) pp. 281–288.

    Google Scholar 

  11. R.C. Churchill and D. Lee, Harmonic oscillators at low energies, preprint, City University of New York (April 1982).

  12. G. Cicogna, On the convergence of normalizing transformations in the presence of symmetries, J. Math. Anal. Appl. 199 (1996) 243.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Cicogna and G. Gaeta, Poincarè normal forms and Lie point symmetries, J. Phys. A 27 (1994) 461–476.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Cicogna and G. Gaeta, Normal forms and nonlinear symmetries, J. Phys. A 27 (1994) 7115–7124.

    Article  MATH  MathSciNet  Google Scholar 

  15. S.-N. Chow, B. Drachman and D. Wang, Computation of normal forms, J. Comput. Appl. Math. 29 (1990) 129–143.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Della Dora, J. Mikram and F. Zinoun, Normal form method for symbolic creation of approximate solutions of nonlinear mechanical systems, CATHODE 2, CIRM Luminy, Marseille (May 3–7, 1999) (http://www-lmc.imag.fr/CATHODE2/Cirm/abstract/).

  17. J. Della Dora and L. Stolovitch, Formes Normales, Calcul Formel et Automatique Non-Lin´eaire, Lecture Notes in Control Theory (Springer, Berlin, 1991).

    Google Scholar 

  18. A. Deprit, Canonical transformation depending on a small parameter, Celest. Mech. 1 (1969) 12–30.

    Article  MATH  MathSciNet  Google Scholar 

  19. V.F. Edneral, A symbolic approximation of periodic solutions of the Hénon–Heiles system by the normal form method, Math. Comput. Simulation 45 (1998) 445–463.

    Article  MATH  MathSciNet  Google Scholar 

  20. J.-P. Françoise, Monodromy and the Kowalevskaya top, Astérisque 150/151 (1987) 87–108.

    MATH  Google Scholar 

  21. L. Gavrilov, Bifurcations of invariant manifolds in the generalized Hénon–Heiles system, Phys. D 34 (1989) 223–239.

    Article  MATH  MathSciNet  Google Scholar 

  22. L. Gavrilov and R. Caboz, Normal modes of an integrable Hénon–Heiles system, preprint L.P.A. Pau (February 1990).

  23. A. Giorgilly, A computer program for integrals of motion, Comput. Phys. Commun. 16 (1979) 331–343.

    Article  Google Scholar 

  24. A. Giorgilli and L. Galgani, Formal integrals for an autonomous Hamiltonian system near an equilibrium point, Celest. Mech. 17 (1978) 267–280.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1986).

    Google Scholar 

  26. M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astronom. J. 69 (1964) 73–79.

    Article  MathSciNet  Google Scholar 

  27. G.I. Hori, Theory of general perturbations with unspecified canonical variables, J. Japan Astron. Soc. 18 (1966) 287–296.

    Google Scholar 

  28. H. Ito, Convergence of Birkhoff normal forms for integrable systems, Comment. Math. Helv. 64 (1989) 412–461.

    MATH  MathSciNet  Google Scholar 

  29. H. Ito, Some aspects of integrability and action-angle variables, Sugaku Expositions 3(2) (1990) 213–232.

    Google Scholar 

  30. H. Ito, Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case, Math. Ann. 292 (1992) 411–444.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Jorba, A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems, preprint (1998) (http://www.ma.utexas.edu/mp arc/ index-98.html).

  32. J. Liouville, Note sur l'intégration des équations diff´erentielles de la dynamique, J. Math. Pures Appl. 20 (1855) 137–138.

    Google Scholar 

  33. W.A. Mersman, A new algorithm for Lie transformation, Celest. Mech. 3 (1970) 81–89.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Mikram and F. Zinoun, On structure preserving normal forms of Hamiltonian dynamical systems, in: 4th Internat. Conf. on Application of Computer Algebra, IMACS-ACA, Prague (August 9–11, 1998) (http://math.unm.edu/ACA/1998/sessions/dynamical/).

  35. Yu.A. Mitropolsky and A.K. Lopatin, Nonlinear Mechanics, Groups and Symmetry (Kluwer, Dordrecht, 1995).

    Google Scholar 

  36. P.J. Olver, Application of Lie Groups to Differential Equations (Springer, Berlin, 1986).

    Google Scholar 

  37. R.H. Rand and W.L. Keith, Normal forms and center manifold calculation on MACSYMA, in: Applications of Computer Algebra, ed. R. Pavelle (1987).

  38. R.M. Rosenberg, On the existence of normal modes vibrations of nonlinear systems with two degrees of freedom, Quart. Appl. Math. 22 (1964) 217–234.

    MATH  Google Scholar 

  39. H. Rüssmann, Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der N¨ahe einer Gleichgewichtslösung, Math. Ann. 154 (1964) 285–300.

    Article  MATH  MathSciNet  Google Scholar 

  40. L. Vallier, An algorithm for the computation of normal forms and invariant manifolds, in: Proc. of the 1993 Internat. Symp. on Symbolic and Algebraic Computation, ed. M. Bronstein, Kiev, Ukraine (July 1993) (ACM, New York, 1993) pp. 225–234.

    Google Scholar 

  41. J. Vey, Sur certains systémes dynamiques séparables, Amer. J. Math. 100 (1978) 591–614.

    Article  MATH  MathSciNet  Google Scholar 

  42. S. Walcher, Algebraische Probleme bei Normalformen gewŌhnlicher Differentialgleichungen, Technische Universität München (1990).

  43. F. Zinoun, Méthodes formelles pour la réduction à la forme normale de systèmes dynamiques, Thése de D.E.S., Universit´e de Rabat (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikram, J., Zinoun, F. Computation of normal forms of Hamiltonian systems in the presence of Poisson commuting integrals. Numerical Algorithms 21, 287–310 (1999). https://doi.org/10.1023/A:1019177917586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019177917586

Navigation