Skip to main content
Log in

Two-dimensional invariant manifolds and global bifurcations: some approximation and visualization studies

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We illustrate and discuss the computer-assisted study (approximation and visualization) of two-dimensional (un)stable manifolds of steady states and saddle-type limit cycles for flows in R n. Our investigation highlights a number of computational issues arising in this task, along with our solutions and “quick-fixes” for some of these problems. Two examples illustrative of both successes and shortcomings of our current approach are presented. Representative “snapshots” demonstrate the dependence of two-dimensional invariant manifolds on a bifurcation parameter as well as their interactions. Such approximation and visualization studies are a necessary component of the computer-assisted study and understanding of global bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Arneodo, P. Coullet, E. Spiegel and C. Tresser, Asymptotic chaos, Physica D 14(3) (1985) 327–347.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Back, J. Guckenheimer, M. Myers, F. Wicklin and P. Worfolk, Dstool: computer assisted exploration of dynamical systems, Notices Amer. Math. Soc. 39 (1992) 303–309.

    Google Scholar 

  3. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods (Springer, New York, 1994).

    MATH  Google Scholar 

  4. L. Dieci and J. Lorenz, Computation of invariant tori by the method of characteristics, SIAM J. Num. Anal. 32 (1995) 1436–1474.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. J. Doedel, AUTO, A program for the automatic bifurcation analysis of autonomous systems, Cong. Num. 30 (1981) 265–284. See also E. J. Doedel and J. P. Kernévez, AUTO: Software for continuation and bifurcation problems in ODEs, Applied Mathematics Report, California Institute of Technology, Pasadena (1986) and E. J. Doedel and X. Wang, AUTO94: Software for continuation and bifurcation problems in ODEs, Applied Mathematics Report, California Institute of Technology, Pasadena (1994).

    MATH  MathSciNet  Google Scholar 

  6. P. Glendinning and C. Sparrow, Local and global behavior near homoclinic orbits, J. Stat. Phys. 35(5/6) (1984) 645–696.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Guckenheimer and P. Worfolk, Dynamical systems: some computational problems, in: Bifurcations and Periodic Orbits of Vector Fields, ed. D. Schlomiuk (Kluwer Academic, 1993) pp. 241–277.

  8. A. J. Hanson and P. A. Heng, Illuminating the fourth dimension, IEEE Computer Graphics & Appl. 12(4) (1992) 54–62.

    Article  Google Scholar 

  9. B. D. Hassard, Computation of invariant manifolds, in: New Approaches to Nonlinear Problems in Dynamics, ed. P. J. Holmes, SIAM Publications, vol. 7 (1980) pp. 27–42.

  10. M. Hénon, On the numerical computation of Poincaré maps, Physica D 5 (1982) 412–414.

    Article  MathSciNet  Google Scholar 

  11. H. Hoppe, T. Derose, T. Duchamp, J. McDonald and W. Stuetzle, Mesh optimization, Comp. Graphics, Ann. Conf. Ser. (SIGGRAPH) (1993) 19–26.

  12. J. H. Hubbard and B. H. West, MacMath 9.2: A Dynamical Systems Software Package for the Macintosh (Springer, New York, 1993).

    Google Scholar 

  13. M. E. Johnson, M. S. Jolly and I. G. Kevrekidis, On the computation of invariant manifolds with applications to global bifurcations of the Kuramoto-Sivashinsky equation, in preparation.

  14. M. E. Johnson, M. S. Jolly, I. G. Kevrekidis and J. S. Lowengrub, A convergent method for the computation of 2-D (un)stable manifolds, in preparation.

  15. M. A. Taylor, M. S. Jolly and I. G. Kevrekidis, SCIGMA: stability computations and interactive graphics for invariant manifold analysis, Technical Report, Dept. of Chem. Eng., Princeton University, Princeton (1989).

    Google Scholar 

  16. M. S. Jolly, R. Rosa and R. Témam, Computations involving a convergent family of approximate inertial manifolds, in preparation.

  17. M. Kubicek and M. Marek, Computational Methods in Bifurcation Theory and Dissipative Structures (Springer, 1983).

  18. E. N. Lorenz, Deterministic nonperiodic flows, J. Atmospheric Sci. 20 (1963) 130–141.

    Article  Google Scholar 

  19. R. Rosa, Approximate inertial manifolds of exponential order, Discrete and Continuous Dyn. Systems 1(3) (1995) 421–448.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential Equations (W. H. Freeman, 1975).

  21. C. Sparrow, Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Applied Mathematical Sciences, vol. 41 (Springer, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.E., Jolly, M.S. & Kevrekidis, I.G. Two-dimensional invariant manifolds and global bifurcations: some approximation and visualization studies. Numerical Algorithms 14, 125–140 (1997). https://doi.org/10.1023/A:1019104828180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019104828180

Navigation