Skip to main content
Log in

P-Glycoprotein-Dependent Disposition Kinetics of Tacrolimus: Studies in mdr la Knockout Mice

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study was performed to evaluate the involvement of P-glycoprotein in disposition kinetics of tacrolimus (FK506), a substrate of P-glycoprotein, in the body.

Methods. The blood and tissue concentrations of FK506 after i.v. or p.o. administration (2 mg/kg) to normal andmdrla knockout mice were measured by competitive enzyme immunoassay.

Results. The blood concentrations in knockout mice were significantly higher than those in normal mice. The value of the total clearance (CLtot) for knockout mice (19.3 mL/min/kg) was about 1/3 of that for normal mice (55.8 mL/min/kg)(P < 0.001), although there was no significant difference in the distribution volume at the steady-state (Vdss) (about 4.6 L/kg) between both types of mice. FK506 rapidly penetrated the blood-brain barrier and the brain concentration reached a maximum, which was about 10 times higher in knockout mice than in normal mice, 1 hr after administration. The brain concentration in normal mice thereafter decreased slowly, whereas in knockout mice, an extremely high concentration was maintained for 24 hr.

Conclusions. The pharmacokinetic behavior of FK506 in the tissue distribution is related with the function of P-glycoprotein encoded by themdr la gene. The brain distribution of FK506 is dominated by the P-glycoprotein-mediated drug efflux and presumably also by the binding to FK-binding proteins (immunophilins) in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Pro. Natl. Acad. Sci. USA 84:7735-7738 (1987).

    Google Scholar 

  2. E. Georges, G. Bradley, J. Gariepy, and V. Ling. Detection of P-glycoprotein isoforms by gene-specific monoclonal antibodies. Pro. Natl. Acad. Sci. USA 87:152-156 (1990).

    Google Scholar 

  3. A. Tsuji, T. Terasaki, Y. Takabatake, Y. Tenda, I. Tamai, T. Yamashita, S. Moritani, T. Tsuruo, and J. Yamashita. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 51:1427-1437 (1992).

    Google Scholar 

  4. A. De Vaut and P. Gros. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol. Cell. Biol. 10:1652-1663 (1990).

    Google Scholar 

  5. P. Borst, A. H. Schinkel, J. J. M. Smit, E. Wagenaar, L. van Deemter, A. J. Smith, E. W. H. M. Eijdems, F. Baas, and G. J. R. Zaman. Classical and novel forms of multidrug resistance and the physiological functions of P-glycoprotein in mammals. Pharmac. Ther. 60:289-299 (1993).

    Google Scholar 

  6. A. H. Schinkel, J. J. M. Smit, O. van Telligen, J. H. Beijinen, E. Wagenaar, L. van Deemter, C. A. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. te Riele, A. J. M. Berns, and P. Brrst. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491-502 (1994).

    Google Scholar 

  7. A. H. Schinkel, E. Wagenaar, L. van Deemter, C. A. Mol, and P. Borst. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 96:1698-1705 (1995).

    Google Scholar 

  8. A. Tsuji and I. Tamai, I. Blood-brain barrier function of P-glycoprotein. Adv. Drug Deliv. Rev. 25:287-298 (1997).

    Google Scholar 

  9. K. Ohara, R. Billington, R. W. James, G. A. Dean, M. Nishiyama, and H. Noguchi. Toxicologic evaluation of FK506. Transplant. Proc. 22:83-86 (1990).

    Google Scholar 

  10. B. A. Appignani, R. A. Bhadelia, S. C. Blacklow, A. K. Wang, S. F. Roland, and R. B. Freeman. Neuroimaging finding in patients on immunosuppressive therapy: Experience with tacrolimus toxicity. Am. J. Roentgenol. 166:683-688 (1996).

    Google Scholar 

  11. J. Sharkey and S. P. Butcher. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischemia. Nature (London) 371:336-339 (1994).

    Google Scholar 

  12. S. P. Butcher, D. C. Henshall, Y. Teramura, K. Iwasaki, and J. Sharkey. Neuroprotective actions of FK506 in experimental stroke: In vivo evidence against an antiexcitotoxic mechanism. J. Neurosci. 17:6939-6946 (1997).

    Google Scholar 

  13. M. Naito, T. Ohhara, A. Yamazaki, T. Danki, and T. Tsuruo. Reversal of multidrug resistance by an immunosuppressive agent FK506. Cancer Chemother. Pharmacol. 29:195-200 (1992).

    Google Scholar 

  14. T. Saeki, K. Ueda, Y. Tanigawara, R. Hori, and T. Komano. Human P-glycoprotein transports cyclosporine A and FK506. J. Biol. Chem. 267:6077-6080 (1993).

    Google Scholar 

  15. M. Kobayashi, K. Tamura, N. Katayama, K. Nakamura, K. Nagase, K. Hane, T. Tutumi, M. Niwa, H. Tanaka, K. Iwasaki, and M. Kohsaka. FK506 assay past and present — characteristics of FK506 ELISA. Transplant. Proc. 23:2725-2729 (1991).

    Google Scholar 

  16. K. Yamaoka, T. Nakagawa, and T. Uno. Moment analysis for disposition kinetics of several cephalosporin antibiotics in rats. J. Pharm. Pharmacol. 35:19-22 (1983).

    Google Scholar 

  17. R. G. Blasberg, J. D. Fenstermacher, and C. S. Patlak. Transport of α-aminoisobutyric acid across brain capillary and cellular membranes. J. Cereb. Blood Flow Metab. 3:8-32 (1983).

    Google Scholar 

  18. U. Christians, C. Kruse, R. Kownatzki, H. M. Schiebel, R. Schwinzer, M. Sattler, R. Schottmann, A. Linck, V. M. F. Almeida, F. Braun, F., and K. Fr. Sewing. Measurement of FK506 by HPLC and isolation and characterization of its metabolites. Transplant. Proc. 23:940-941 (1991).

    Google Scholar 

  19. T. Shiraga, H. Matsuda, K. Nagase, K. Iwasaki, K. Noda, H. Yamazaki, T. Shimada, and Y. Funae. Metabolism of FK506, a potent immunosappressive agent, by cytochrome P450 3A enzymes in rat, dog, and human liver microsomes. Biochem. Pharmacol. 47:7275 (1994).

    Google Scholar 

  20. A. M. Alak. Measurement of tacrolimus (FK506) and its metabolites: A review of assay development and application in therapeutic drug monitoring and pharmacokinetic studies. Ther. Drug Monitor. 19:338-351 (1997).

    Google Scholar 

  21. A. M. Alak and S. Moy. Biological activity of tacrolimus (FK506) and its metabolites from whole blood of kidney transplant patients. Transplant. Proc. 29:2487-2490 (1997).

    Google Scholar 

  22. K. Iwasaki, T. Shiraga, K. Nagase, K. Hirano, K. Nozaki, and K. Noda. Pharmacokinetic study of FK506 in the rat. Transplant. Proc. 23:2757-2759 (1991).

    Google Scholar 

  23. K. Iwasaki, T. Shiraga, H. Matsuda, Y. Teramura, A. Kawamura, T. Hata, S. Ninimiya, and Y. Esumi. Absorption, distribution, metabolism and excretion of tacrolimus (FK506) in the rat. Xenobio. Metabol. Dispos. 13:259-265 (1998).

    Google Scholar 

  24. R. Venkataramanan, A. Swaminatha, T. Prasad, A. Jain, S. Zuckerman, V. Warty, J. McMichael, J. Lever, G. Burckart, and T. Starzl. Clinical pharmacokinetics of tacrolimus. Clin. Pharmacokinet. 29:404-430 (1995).

    Google Scholar 

  25. N. Takeguchi, K. Ichimura, M. Koike, W. Matsui, T. Kashiwagura, and K. Kawahara. Inhibition of the multidrug efflux pump in isolated hepatocyte couplets by immunosuppressants FK506 and cyclosporine. Transplantation 55:646-650 (1993).

    Google Scholar 

  26. F. Ichimura, K. Yokogawa, T. Yamana, A. Tsuji, and Y. Mizukami. Physiological pharmacokinetic model for pentazocine. I. Tissue distribution and elimination in the rat. Int. J. Pharm. 15:321-333 (1983).

    Google Scholar 

  27. J. Liu, J. D. Farmer, W. S. Lane, J. Friedman, I. Weissman, and S. L. Schreiver. Calcineurin is a common target of cyclophillin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807-815 (1991).

    Google Scholar 

  28. J. P. Steiner, T. M. Dawson, M. Fotuhi, C. E. Glatt, A. M. Snowman, N. Cohen, and S. H. Snyder. High brain densities of the immunophilin FKBP colocalized with calcineurin. Nature (London) 358:584-587 (1992).

    Google Scholar 

  29. M. Asami, T. Kuno, H. Mukai, and C. Tanaka. Detection of the FK506-FKBP-calcineurin complex by a simple binding assay. Biochem. Biophys. Res. Commun. 192:1388-1394 (1993).

    Google Scholar 

  30. T. Terao, E. Hisanaga, Y. Sai, I. Tamai, and A. Tsuji. Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J. Pharm. Pharmacol. 48:1083-1089 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Tsuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokogawa, K., Takahashi, M., Tamai, I. et al. P-Glycoprotein-Dependent Disposition Kinetics of Tacrolimus: Studies in mdr la Knockout Mice. Pharm Res 16, 1213–1218 (1999). https://doi.org/10.1023/A:1018993312773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018993312773

Navigation