Skip to main content
Log in

pH and Osmotic Pressure Inside Biodegradable Microspheres During Erosion1

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To measure changes in pH as well as osmotic pressure in aqueous pores and cavities inside biodegradable microspheres made from polymers such as poly(D,L-lactic acid) (PLA) and poly(D,L-lactic acid -co- glycolic acid) (PLGA).

Methods. The internal osmotic pressure inside eroding PLA microspheres was analyzed with differential scanning calorimetry (DSC) in a temperature range of 10 to −25°C. The osmotic pressure was calculated from the melting peaks of the aqueous phase using purity analysis. For pH determination, PLGA microspheres were loaded with a pH-sensitive spin probe which allowed the determination of pH by electron paramagnetic resonance (EPR).

Results. The osmotic pressure in PLA microspheres increased to 600 mOsm within four days and decreased to 400 mOsm after two weeks. The pH in PLGA microspheres in this study was ≤4.7. Basic drugs such as gentamicin free base or buffering additives led to a pH increase. In no case, however, did the internal pH exceed a value of 6 within 13 hours.

Conclusions. DSC and EPR are useful techniques to characterize the chemical microenvironment inside eroding microspheres. This data in combination with detailed information on peptide and protein stability could allow in the future to predict the stability of such compounds within degradable polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. V. Maulding. Prolonged delivery of peptides by microcapsules. J. Contr. Rel. 6:167–176 (1987).

    Google Scholar 

  2. C. Thomasin, G. Corradin, Y. Men, H. P. Merkle, and B. Gander. Tetanus toxoid and synthetic malaria antigen containing poly(lactide)/poly(lactide-co-glycolide) microspheres: importance of polymer degradation and antigen release for immune response. J. Contr. Rel. 41:131–145 (1996).

    Google Scholar 

  3. H. Okada, Y. Doken, Y. Ogawa, and H. Toguchi. Preparation of three-month depot injectable microspheres of leuprorelin acetate using biodegradable polymers. Pharm. Res. 11:1143–1147 (1994).

    Google Scholar 

  4. S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, and R. Langer. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm. Res. 8:713–720 (1991).

    Google Scholar 

  5. M. J. Blanco Prieto, F. Delie, E. Fattal, A. Tartar, F. Pusieux, A. Gulik, and P. Couvreur. Characterization of V3 BRU peptideloaded small PLGA microspheres prepared by a (w1/o)w2 emulsion solvent evaporation method. Int. J. Pharm. 111:137–145 (1994).

    Google Scholar 

  6. J. Herrmann and R. Bodmeier. Somatostatin containing biodegradable microspheres prepared by a modified solvent evaporation method based on W/O/W-multiple emulsions. Int. J. Pharm. 126:129–138 (1995).

    Google Scholar 

  7. S. P. Schwendeman, H. R. Costantino, R. K. Gupta, and R. Langer. Progress and challenges for peptide, protein and vaccine delivery from implantable polymeric systems. In: K. Park (ed.), Controlled Drug Delivery: Challenges and Strategies. American Chemical Society, Washington, pp. 229–267 (1997).

    Google Scholar 

  8. M. Morlock, H. Knoll, G. Winter, and T. Kissel. Microencapsulation of rh-erythropoetin, using biodegradable poly(D,L-lactide-co-glycolide): protein stability and the effects of stabilizing excipients. Eur. J. Pharm. Biopharm. 43:29–36 (1997).

    Google Scholar 

  9. K. Mäder, B. Gallez, K. J. Liu, and H. M. Swartz. Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy. Biomaterials 17:457–461 (1996).

    Google Scholar 

  10. T. G. Park, W. Lue, and G. Crotts. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly(D,L-lactic-co-glycolic acid) microspheres. J. Contr. Rel. 33:211–222 (1995).

    Google Scholar 

  11. M. C. Manning, K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals. Pharm. Res. 6:903–918 (1989).

    Google Scholar 

  12. V. V. Khramtsov and L. M. Weiner. Proton exchange in stable nitroxide radicals: pH-sensitive spin probes. In: Imidazoline nitroxides, ed. Volodarsky, L. B. (CRC press, Boca Raton, FL), Vol. 2, pp. 37–80 (1988).

    Google Scholar 

  13. K. Mäder, S. Nitschke, R. Stösser, H.-H. Borchert, and A. Domb. Non-destructive and localized assessment of acidic microenvironments inside biodegradable polyanhydrides by spectral spatial electron paramagnetic resonance imaging. Polymer 38:4785–4794 (1997).

    Google Scholar 

  14. K. Mäder, B. Bittner, Y. Li, W. Wohlauf, and T. Kissel. Monitoring microviscosity and microacidity of the albumin microenvironment inside degrading microparticles from polylactide-co-glycolide) (PLG) or ABA-triblock polymers containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethylenoxide) B blocks. Pharm. Res. 15:787–793 (1998).

    Google Scholar 

  15. G. Zhu and S. P. Schwendeman. Stabilization of bovin serum albumin encapsulated in injectable poly(lactide-co-glycolide) millicylinders. Proceed. Int'l. Symp. Rel. Bioact. Mater. 25:267–268 (1998).

    Google Scholar 

  16. A. J. Domb, L. Turovsky, and R. Nudelman. Chemical interactions between drugs containing reactive amines with hydrolyzable insoluble biopolymers in aqueous solutions. Pharm. Res. 11:865–8 (1994).

    Google Scholar 

  17. A. A. van Dooren and B. W. Müller. Purity determinations of drugs with differential scanning calorimetry (DSC) — a critical review. Int. J. Pharm. 20:217–233 (1984).

    Google Scholar 

  18. B. Wunderlich. Thermal Analysis, Academic Press, Inc., San Diego. 1990.

    Google Scholar 

  19. W. P. Brennan, M. P. DiVito, R. L. Fyans, and A. P. Gray. An overview of the calorimetric purity measurement. Thermal Analysis Newsletter 5 and 6. The Perkin Elmer Corporation, Norwalk, Conneticut, USA.

  20. T. G. Park. Degradation of poly(D,L-lactic acid) microspheres: effect of molecular weight. J. Contr. Rel. 30:161–173 (1994).

    Google Scholar 

  21. D. K.-L. Xing, D. T. Crane, B. Bolgiano, M. J. Corbel, C. Jones, and D. Sesardic. Physicochemical and immunological studies on the stability of free and microsphere-encapsulated tetanus toxoid in vitro, Vaccine 14:1205–1213 (1996).

    Google Scholar 

  22. L. Chen, R. N. Apte, and S. Cohen. Characterization of PLGA microspheres for the controlled delivery of IL-1α for tumor immunotherapy, J. Contr. Rel. 43(2,3):261–272 (1997).

    Google Scholar 

  23. T. Uchida, A. Yagi, Y. Oda, Y. Nakada, and S. Goto. Instability of bovine insulin in poly(lactide-co-glycolide) (PLGA) microspheres, Chem. Pharm. Bull. 44:235–6 (1996).

    Google Scholar 

  24. J. L. Cleland, A. Mac, B. Boyd, J. Yang, E. T. Duenas, D. Yeung, D. Brooks, C. Hsu, H. Chu, et al. The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 14:420–425 (1997).

    Google Scholar 

  25. P. A. Burke. Determination of internal pH in PLGA microspheres using 31P-NMR spectroscopy. Proc. Int. Symp. Controlled Release Bioact. Mater. 23:133–134 (1996).

    Google Scholar 

  26. A. Shenderova, T. G. Burke, and S. P. Schwendeman. Evidence for an acidic microclimate in PLGA microspheres. Proc. Int. Symp. Controlled Release Bioact. Mater. 25:265–266 (1998).

    Google Scholar 

  27. K. Fu, D. W. Pack, A. Laverdiere, S. Son, and R. Langer. Visualization of pH in degrading polymer microspheres. Proc. Int. Symp. Controlled Release Bioact. Mater. 25:150–151 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Göpferich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, A., Mäder, K. & Göpferich, A. pH and Osmotic Pressure Inside Biodegradable Microspheres During Erosion1. Pharm Res 16, 847–853 (1999). https://doi.org/10.1023/A:1018822002353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018822002353

Navigation