Skip to main content
Log in

Biogeographic and bathymetric ranges of Atlantic deep-sea echinoderms and ascidians: the role of larval dispersal

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Dispersal plays an important role in the establishment and maintenance of biodiversity and, for most deep-sea benthic marine invertebrates, it occurs mainly during the larval stages. Therefore, the mode of reproduction (and thus dispersal ability) will affect greatly the biogeographic and bathymetric distributions of deep-sea organisms. We tested the hypothesis that, for bathyal and abyssal echinoderms and ascidians of the Atlantic Ocean, species with planktotrophic larval development have broader biogeographic and bathymetric ranges than species with lecithotrophic development. In comparing two groups with lecithotrophic development, we found that ascidians, which probably have a shorter larval period and therefore less dispersal potential, were present in fewer geographic regions than elasipod holothurians, which are likely to have longer larval periods. For asteroids and echinoids, both the geographic and bathymetric ranges were greater for lecithotrophic than for planktotrophic species. For these two classes, the relationships of egg diameter with geographic and bathymetric range were either linearly increasing or non-monotonic. We conclude that lecithotrophic development does not necessarily constrain dispersal in the deep sea, probably because species with planktotrophic development may be confined to regions of high detrital input from the sea surface. Our data suggest that more information is necessary on lengths of larval period for different species to accurately assess dispersal in the deep sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birkeland, C., Chia, F.-S. and Strathmann, R.R. (1971) Development, substratum selection, delay of metamorphosis and growth in the seastar Mediaster aequalis Stimpson. Biol. Bull. 141, 99–108.

    Google Scholar 

  • Bouchet, P. and Warén, A. (1994) Ontogenetic migration and dispersal of deep-sea gastropod larvae. In Reproduction, Larval Biology and Recruitment of the Deep-Sea Benthos. (C.M. Young and K.J. Eckelbarger, eds) pp. 98–117. New York: Columbia University Press.

    Google Scholar 

  • Chesson, P. (1985) Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability. Theor. Popul. Biol. 28, 263–87.

    Google Scholar 

  • Chevaldonné, P., Jollivet, D., Vangriesheim, A. and Desbruyères, D. (1997) Hydrothermal-vent alvinellid polychaete dispersal in the eastern Pacific. 1. Influence of vent site distribution, bottom currents, and biological patterns. Limnol. Oceanogr. 42, 67–80.

    Google Scholar 

  • Clark, A.M. and Downey, M.E. (1992) Starfishes of the Atlantic. London: Chapman & Hall.

    Google Scholar 

  • Clark, H.L. (1925) A Catalogue of the Recent Sea-Urchins (Echinoidea) in the Collection of the British Museum (Natural History). Oxford: Oxford University Press.

    Google Scholar 

  • Craddock, C., Lutz, R.A. and Vrijenhoek, R.C. (1997) Patterns of dispersal and larval development of archaeogastropod limpets at hydrothermal vents in the eastern Pacific. J. Exp. Mar. Biol. Ecol. 210, 37–51.

    Google Scholar 

  • Creasy, S., Rogers, A.D. and Tyler, P.A. (1996) A genetic comparison of two populations of the deep-sea vent shrimp Rimicaris exoculata (Decapoda: Caridea: Bresiliidae) from the Mid-Atlantic Ridge. Mar. Biol. 125, 473–83.

    Google Scholar 

  • Desbruyères, D. and Laubier, L. (1986) Les Alvinellidae, une famille nouvelle d'annélides polychètes inféodées aux source hydrothermales sous-marines: systématique, biologie et écologie. Can. J. Zool. 64, 2227–45.

    Google Scholar 

  • Emlet, R.B., McEdward, L.R. and Strathmann, R.R. (1987) Echinoderm larval ecology viewed from the egg. In Echinoderm Studies, Vol. 2. (M. Jangoux and J.M. Lawrence, eds) pp. 55–136. Rotterdam: A.A. Balkema.

    Google Scholar 

  • Etter, R.J. and Rex, M.A. (1990) Population differentiation decreases with depth in deep-sea gastropods. Deep-Sea Res. 37, 1251–61.

    Google Scholar 

  • Etter, R.J. and Caswell, H. (1994) The advantages of dispersal in a patchy environment: effects of disturbance in a cellular automaton model. In Reproduction, Larval Biology and Recruitment of the Deep-Sea Benthos (C.M. Young and K.J. Eckelbarger, eds) pp. 284–305. New York: Columbia University Press.

    Google Scholar 

  • Gage, J.D., Billet, D.S.M., Jensen, M. and Tyler, P.A. (1985) Echinoderms of the Rockall Trough and adjacent areas 2. Echinoidea and Holothurioidea. Bull. Br. Mus. Nat. Hist. (Zool.) 48, 173–213.

    Google Scholar 

  • Gebruk, A., Tyler, P.A. and Billett, D.S.M. (in press) Pelagic juveniles of the deep-sea elasipodid holothurians: new records and review. Ophelia.

  • Hansen, B. (1975) Systematics and biology of the deep-sea holothurians Part 1. Elasipoda. Galathea Rep. 13, 5–262.

    Google Scholar 

  • Hansen, T.A. (1978) Larval dispersal and species longevity in Lower Tertiary gastropods. Science 199, 885–7.

    Google Scholar 

  • Herdman, W.A. (1882) Tunicata Part I. In Report on the Scientific Results of the Challenger Expedition during the years 1873–1876 vol. 6, pt 17 (C.W. Thomson and J. Murray, eds) pp. 1–296.

  • Hessler, R.R. and Thistle, D. (1975) On the place of origin of deep-sea isopods. Mar. Biol. 32, 155–65.

    Google Scholar 

  • Hessler, R.R., Wilson, G.D. and Thistle D. (1979) The deep-sea isopods: a biogeographic and pylogenetic review. Sarsia 64, 67–75.

    Google Scholar 

  • Jablonski, D. (1982) Evolutionary rates and modes in Late Cretaceous gastropods: role of larval ecology. Third North American Paleontol. Conv. Proceed. 1, 257–62.

    Google Scholar 

  • Jollivet, D., Desbruyères, D., Bonhomme, F. and Moraga, D. (1995) Genetic differentiation of deep-sea hydrothermal vent alvinellid populations (Annelida: Polychaeta) along the East Pacific Rise. Heredity (Lond.) 74, 376–91.

    Google Scholar 

  • Josefson, A. (1985) Distribution of diversity and functional groups of marine benthic infauna in the Skagerrak (eastern North Sea). Can larval availability affect diversity? Sarsia 70, 229–49.

    Google Scholar 

  • Levin, S.A. (1974) Dispersion and population interactions. Am. Nat. 108, 207–28.

    Google Scholar 

  • Madsen, F.J. (1961) On the zoogeography and origin of the abyssal fauna in view of the knowledge of the Porcellanasteridae. Galathea Rep. 4, 177–218.

    Google Scholar 

  • Menzies, R.J., George, R.Y. and Rowe, G.T. (1973) Abyssal Environment and Ecology of the World Oceans. New York: John Wiley & Sons.

    Google Scholar 

  • Monniot, C. and Monniot, F. (1973) Ascidies abyssales récoltées au cours de la campagne océanographique Biaçores par le “Jean-charcot”. Bull. Mus. Nat. Hist. Natur. 121, 389–475.

    Google Scholar 

  • Mortensen, T. (1927) Handbook of the Echinoderms of the British Isles. London: Oxford University Press.

    Google Scholar 

  • Mortensen, T. (1928) A Monograph of the Echinoidea, Vol. I, Cidaroidea. Copenhagen: C.A. Reitzel.

    Google Scholar 

  • Mortensen, T. (1935) A Monograph of the Echinoidea, Vol. II, Bothriocidaroidea, Melonechinoida, Lepidocentroida & Stirodonta. Copenhagen: C.A. Reitzel.

    Google Scholar 

  • Mortensen, T. (1940) A Monograph of the Echinoidea, Vol. III (1) Aulondonta. Copenhagen: C.A. Reitzel.

    Google Scholar 

  • Mortensen, T. (1943a) A Monograph of the Echinoidea, Vol. III (2) Camarodonta (1). Copenhagen: C.A. Reitzel.

    Google Scholar 

  • Mortensen, T. (1943b) A Monograph of the Echinoidea, Vol. III (3) Camarodonta (2). Copenhagen: C.A. Reitzel.

    Google Scholar 

  • Mortensen, T. (1948a) A Monograph of the Echinoidea, Vol. IV (1) Holectypoida and Cassiduloida. Copenhagen: C.A. Reitzel.

    Google Scholar 

  • Mortensen, T. 1948b) A Monograph of the Echinoidea, Vol. IV (2) Clypeastroida. Copenhagen: C.A. Reitzel.

    Google Scholar 

  • Mortensen, T. (1950) A Monograph of the Echinoidea, Vol. V (1) Spatangoida 1. Copenhagen: C.A. Reitzel.

    Google Scholar 

  • Mortensen, T. (1951) A Monograph of the Echinoidea, Vol. V (2) Spatangoida 2. Copenhagen: C.A. Reitzel.

    Google Scholar 

  • Moseley, H.N. (1880) Deep-sea dredgings and life in the deep sea. Nature 21, 543–7.

    Google Scholar 

  • Olson, R.R. and Olson, M.H. (1989) Food limitation of planktotrophic marine invertebrate larvae: does it control recruitment success? Ann. Rev. Ecol. Syst. 20, 225–47.

    Google Scholar 

  • Palmer, A.R. and Strathmann, R.R. (1981) Scale of dispersal in varying environments and its implications for life-histories of marine invertebrates. Oecologia 48, 308–18.

    Google Scholar 

  • Pearse, J.S. (1994) Cold-water echinoderms break “Thorson's rule”. In Reproduction, Larval Biology and Recruitment of the Deep-Sea Benthos (C.M. Young and K.J. Eckelbarger, eds) pp. 26–43. New York: Columbia University Press.

    Google Scholar 

  • Pineda, J. (1993) Boundary effects on the vertical ranges of deep-sea benthic species. Deep-Sea Res. 40, 2179–92.

    Google Scholar 

  • Rex, M.A. (1981) Community structure in the deep-sea benthos. Ann. Rev. Ecol. Syst. 12, 331–53.

    Google Scholar 

  • Rex, M.A. (1983) Geographic patterns of species diversity in the deep-sea benthos. In Deep Sea Biology (G.T. Rowe, ed.) pp. 453–72. New York: John Wiley & Sons.

    Google Scholar 

  • Rex, M.A. and Warén, A. (1982) Planktotrophic development in deep-sea prosobranch snails from the western North Atlantic. Deep-Sea Res. 29, 171–84.

    Google Scholar 

  • Rex, M.A., Stuart, C.T., Hessler, R.R., Allen, J.A., Sanders, H.L. and Wilson, G.D.F. (1993) Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365, 636–9.

    Google Scholar 

  • Sanders, H.L. (1979) Evolutionary ecology and life-history patterns in the deep sea. Sarsia 64, 1–7.

    Google Scholar 

  • Sanders, H.L. and Grassle, J.F. (1971) The interactions of diversity, distribution and mode of reproduction among major grouping of deep-sea benthos. Proc. Joint Oceanogr. Assembl. (Tokyo, 1970) 260–2.

  • Scheltema, R.S. (1986) On dispersal and planktonic larvae of benthic invertebrates; an eclectic overview and summary of problems. Bull. Mar. Sci. 39, 290–322.

    Google Scholar 

  • Serafy, D.K. (1979) Echinoids (Echinodermata: Echinoidea). Memoirs of the Hourglass Cruises 5, 1–120.

    Google Scholar 

  • Shilling, F.M. and Manahan, D.T. (1994) Energy metabolism and amino acid transport during early development of Antarctic and temperate echinoderms. Biol. Bull. 187, 398–407.

    Google Scholar 

  • Smith, C.R. and Hessler, R.R. (1987) Colonization and succession in deep-sea ecosystems. Trends Ecol. Evol. 2, 359–63.

    Google Scholar 

  • Strathmann, R.R. (1974) The spread of sibling larvae of sedentary marine invertebrates. Am. Nat. 108, 29–44.

    Google Scholar 

  • Stuart, C.T. and Rex, M.A. (1994) The relationship between developmental pattern and species diversity in deep-sea prosobranch snails. In Reproduction, Larval Biology and Recruitment of the Deep-Sea Benthos (C.M. Young and K.J. Eckelbarger, eds) pp. 118–36. New York: Columbia University Press.

    Google Scholar 

  • Svane, I. and Young, C.M. (1989) The ecology and behaviour of ascidian larvae. Oceanogr. Mar. Biol. Annu. Rev. 27, 45–90.

    Google Scholar 

  • Thorson, G. (1950) Reproduction and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45.

    Google Scholar 

  • Tyler, P.A. (1995) Conditions for the existence of life at the deep-sea floor: an update. Oceanogr. Mar. Biol. Ann. Rev. 33, 221–44.

    Google Scholar 

  • Tyler, P.A. and Young, C.M. (1992) Reproduction in marine invertebrates in “stable” environments: the deep sea model. Invert. Reprod. Develop. 22, 185–92.

    Google Scholar 

  • Tyler, P.A., Young, C.M. and Serafy, K. (1995) Distribution, diet and reproduction in the genus Echinus: Evidence for recent diversification? In Echinoderm Research 1995 (R.H. Emson, A.B. Smith and A.C. Campbell, eds) pp. 29–35. Rotterdam: A.A. Balkema.

    Google Scholar 

  • Vinogradova, N.G. (1959) The zoogeographical distribution of the deep-water bottom fauna in the abyssal zone of the ocean. Deep-Sea Res. 5, 205–8.

    Google Scholar 

  • Wilson, G.D.F. and Hessler, R.R. (1987) Speciation in the deep sea. Ann. Rev. Ecol. Syst. 18, 185–207.

    Google Scholar 

  • Young, C.M. (1992) Episodic recruitment and cohort dominance in echinoid populations at bathyal depths. In Marine Eutrophication and Population Dynamics, Proceedings of the 25th EMBS (G. Colombo et al., eds) pp. 239–46. Fredensborg: Olsen & Olsen.

    Google Scholar 

  • Young, C.M. (1994) A tale of two dogmas: the early history of deep-sea reproductive biology. In Reproduction, Larval Biology and Recruitment of the Deep-Sea Benthos (C.M. Young and K.J. Eckelbarger, eds) pp. 1–25. New York: Columbia University Press.

    Google Scholar 

  • Zal, F., Jollivet, D., Chevaldonné and Desbruyères, D. (1995) Reproductive biology and population structure of the deep-sea hydrothermal vent worm Paralvinella grasslei (Polychaeta: Alvinellidae) at 13°N on the East Pacific Rise. Mar. Biol. 122, 637–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, C.M., Sewell, M.A., Tyler, P.A. et al. Biogeographic and bathymetric ranges of Atlantic deep-sea echinoderms and ascidians: the role of larval dispersal. Biodiversity and Conservation 6, 1507–1522 (1997). https://doi.org/10.1023/A:1018314403123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018314403123

Navigation