Skip to main content
Log in

Cloning, functional expression in Escherichia coli and primary characterization of a new NA+/H+ antiporter, NhaD, of Vibrio cholerae

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vibrio cholerae is the infectious agent of the deadly diarrheal disease, cholera. Na+ ion homeostasis is believed to play a key role in both physiology and pathogenicity of this bacterium. However, molecular mechanisms of sodium exchange in V. cholerae are still poorly understood. In the present work a gene encoding an unusual Na+/H+ antiporter, nhaD, was identified in the V. cholerae genome. nhaD was cloned from Vibrio cholerae and expressed in Escherichia coli. The antiporter functioned in an E. coli nhaAnhaB mutant strain to confer resistance to LiCl and NaCl. When assayed in inside-out subbacterial vesicles, V. cholerae NhaD demonstrated high affinity for Na+ ions (1.1 mM Na+ was required for the half-maximal response at the pH-optimum). The most striking feature of Vc-NhaD is a unique pH-profile of its activity with a sharp maximum at pH 8.0, different from that of any bacterial sodium-proton antiporter described so far. The difference is rationalized as being the result of a His to Arg substitution in a putative pH sensing residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Häse C, Mekalanos J: Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 96: 3183–3187, 1999

    Google Scholar 

  2. Häse C, Mekalanos J: TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 95: 730–734, 1998

    Google Scholar 

  3. Kojima S, Yamamoto K, Kawagishi I, Homma M: The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J Bacteriol 181: 1927–1930, 1999

    Google Scholar 

  4. Gosink K, Häse C: Requirements for conversion of the Na+-driven flagellar motor of Vibrio cholerae to the H+-driven motor of Escherichia coli. J Bacteriol 182: 4234–4240, 2000

    Google Scholar 

  5. Vimont S, Berche P: NhaA, an Na+/H+ antiporter involved in environmental survival of Vibrio cholerae. J Bacteriol 182: 2937–2944, 2000

    Google Scholar 

  6. Gardel C, Mekalanos J: Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 64: 2246–2255, 1996

    Google Scholar 

  7. Bakeeva L, Chumakov K, Drachev A, Metlina A, Skulachev V: The sodium cycle. III. Vibrio alginolyticus resembles Vibrio cholerae and some other vibriones by flagellar motor and ribosomal 5S-RNA structures. Biochim Biophys Acta 850: 466–472, 1986

    Google Scholar 

  8. Avetisyan A, Bogachev A, Murtasina R, Skulachev V: ATP-driven Na+ transport and Na+-dependent ATP synthesis in Escherichia coli grown at low ΔµH+. FEBS Lett 317: 267–270, 1993

    Google Scholar 

  9. Dibrov P, Lazarova R, Skulachev V, Verkhovskaya M: The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells. Biochim Biophys Acta 850: 458–465, 1986

    Google Scholar 

  10. Dimroth P, Wang H, Grabe M, Oster G: Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proc Natl Acad Sci USA 96: 4924–4929, 1999

    Google Scholar 

  11. Dibrov P: The role of sodium ion transport in Escherichia coli energetics. Biochim Biophys Acta 1056: 209–224, 1991

    Google Scholar 

  12. Atsumi T, McCarter L, Imae Y: Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355: 182–184, 1992

    Google Scholar 

  13. Dibrov P, Kostyrko V, Lazarova R, Skulachev V, Smirnova I: The sodium cycle. I. Na-dependent motility and modes of membrane energization in marine alkalotolerant bacterium Vibrio alginolyticus. Biochim Biophys Acta 850: 449–457, 1986

    Google Scholar 

  14. Krulwich T: Na+/H+ antiporters. Biochim Biophys Acta 726: 245–264, 1983

    Google Scholar 

  15. Kuroda T, Shimamoto T, Inaba K, Tsuda M, Tsuchiya T: Properties and sequence of the NhaA Na+/H+ antiporter of Vibrio parahaemolyticus. J Biochem (Tokyo) 116: 1030–1038, 1994

    Google Scholar 

  16. Padan E, Schuldiner S: Molecular physiology of Na+/H+ antiporters, key transporters in circulation of Na+ and H+ in cells. Biochim Biophys Acta 1185: 129–151, 1994

    Google Scholar 

  17. Padan E, Schuldiner S: Bacterial Na+/H+ antiporters — molecular biology, biochemistry, and physiology. In: W. Konings, R. Kaback, J. Lolkema (eds). The Handbook of Biological Physics, Vol. II. Transport Processes in Membranes. Elsevier Science, Amsterdam, The Netherlands, 1996, pp 501–531

    Google Scholar 

  18. Nozaki K, Inaba K, Kuroda T, Tsuda M, Tsuchiya T: Cloning and sequencing of the gene for Na+/H+ antiporter of Vibrio parahaemolyticus. Biochem Biophys Res Commun 222: 774–779, 1996

    Google Scholar 

  19. Nakamura T, Komano Y, Itaya E, Tsukamoto K, Tsuchiya T: Cloning and sequencing of an Na+/H+ antiporter gene from the marine bacterium Vibrio alginolyticus. Biochim Biophys Acta 1190: 465–468, 1994

    Google Scholar 

  20. Nakamura T, Enomoto H, Unemoto T: Cloning and sequencing of nhaB gene encoding an Na+/H+ antiporter from Vibrio alginolyticus. Biochim Biophys Acta 1275 157–160, 1996

    Google Scholar 

  21. Nozaki K, Kuroda T, Mizushima T, Tsuchiya T: A new Na+/H+ antiporter, NhaD, of Vibrio parahaemolyticus. Biochim Biophys Acta 1369: 213–220, 1998

    Google Scholar 

  22. Claros M, von Heijne G: TopPred II: An improved software for membrane protein structure predictions. Comp Appl Biosci 10: 685–686, 1994

    Google Scholar 

  23. Chen W, Kuo T: A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA. Nucleic Acid Res 21: 2260, 1993

    Google Scholar 

  24. Harel-Bronstein M, Dibrov P, Olami Y, Pinner E, Schuldiner S, Padan E: MH1, a second-site revertant of an Escherichia coli mutant lacking Na+/H+ antiporters (ΔnhaAΔnhaB), regains Na+ resistance and a capacity to excrete Na+ in a ΔµH+-independent fashion. J Biol Chem 270: 3816–3822, 1995

    Google Scholar 

  25. Gerchman Y, Olami Y, Rimon A, Taglicht D, Schuldiner S, Padan E: Histidine-226 is part of the pH sensor of NhaA, a Na+/H+ antiporter in Escherichia coli. Proc Natl Acad Sci USA 90: 1212–1216, 1993

    Google Scholar 

  26. Olami Y, Rimon A, Gerchman Y, Rothman A, Padan E: Histidine 225, a residue of the NhaA — Na+/H+ antiporter of Escherichia coli is exposed and faces the cell exterior. J Biol Chem 272: 1761–1768, 1997

    Google Scholar 

  27. Booth J: Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49: 359–378, 1985

    Google Scholar 

  28. Ikegami M, Takahashi H, Igarashi K, Kakinuma Y: Sodium ATPase and sodium/proton antiporter are not obligatory for sodium homeostasis of Enterococcus hirae at acid pH. Biosci Biotechnol Biochem 64: 1088–1092, 2000

    Google Scholar 

  29. Altschul S, Madden T, Schaffer A, Zhang J, Zheng Z, Miller W, Lipman D: Gapped BLAST and PSI-BLAST — A new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Dibrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzioba, J., Ostroumov, E., Winogrodzki, A. et al. Cloning, functional expression in Escherichia coli and primary characterization of a new NA+/H+ antiporter, NhaD, of Vibrio cholerae . Mol Cell Biochem 229, 119–124 (2002). https://doi.org/10.1023/A:1017932829927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017932829927

Navigation