Skip to main content
Log in

Embryogenesis specific protein changes in birch suspension cultures

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Two cell lines of birch (Betula pendula Roth.), one potentially embryogenic given the right inductive conditions and one which never has shown any embryogenic capacity, were both subjected to conditions inductive and non-inductive for somatic embryogenesis. Cells from these treatments were harvested at intervals over a 3-week period and washed with salt solution to wash off proteins loosely attached to the cell walls. The remaining cells were either freeze-dried whole or the cell walls were isolated. The extracted proteins from these three cell preparations were separated by one-dimentional SDS-polyacrylamide gel electrophoresis and detected by silver staining. Proteins specific for embryogenic cultures under inductive conditions were found in samples from the whole washed cells, whereas in the samples from isolated cell walls and “cell washings”, certain proteins seemed to disappear when the cells entered the embryogenic state. The changes in protein patterns were evident 24 h after the medium has been changed to embryo-production medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altman A, Nadel BL, Falash Z & Levin N (1990) Somatic embryogenesis in celery: Induction, control and changes in polyamines and proteins. In: Nijkamp HJJ, Van Der Plas LHW& Van Aartijk J (Eds) Progress in Plant Cellular and Molecular Biology (pp 454–459) Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Atwell BJ & ap Rees T (1986) Distribution of protein synthesized by seedlings of Oryza sativa grown in anoxia. J. Plant Physiol. 123: 401–408

    CAS  Google Scholar 

  • Bakry AA El, Hildebrand DF & Williams EG (1988) Histology and protein profiles during somatic embryogenesis in callus cultures of alfalfa. J.Cell Biochem. Suppl. 0(12), part C, p 179

    Google Scholar 

  • Bradley DJ, Kjellbom P & Lamb CJ (1992) Elicitor-and woundinduced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defence response. Cell 70: 21–30

    Article  PubMed  CAS  Google Scholar 

  • Chen L-J & Luthe DS (1987) Analysis of proteins from embryogenic and non-embryogenic rice (Oryza sativa L.) calli. Plant Sci. 48:181–188

    Article  CAS  Google Scholar 

  • Choi JH, Liang-Shi L, Borkind C & ZR Sung (1987) Cloning of plant genes developmentally regulated during plant embryogenesis. Proc. Natl. Acad. Sci. USA 84: 1906–1910

    Article  PubMed  CAS  Google Scholar 

  • Christou P & Yang N-S (1989) Developmental aspects of soybean (Glycine max) somatic embryogenesis. Ann. Bot. 64: 225–234

    CAS  Google Scholar 

  • Cordewener JHG, Busink R, N¨ollen Y, Custers JBM, Traas JA & Dons JJM (1992) Proteins associated with the induction of Brassica napus microspore embryogenesis. InVitro Cell. & Dev. Biol. 28(3) Part II:52A. Abstract P-6

    Google Scholar 

  • De Vries SC, Booij H, Meyerink P, Huisman G, Wilde HD, Thomas TL & Van Kammen A(1988a) Acquisition of embryogenic potensial in carrot cell-suspension cultures. Planta 176: 196 204

    Google Scholar 

  • De Vries SC, Booij H, Janssen R, Vogels R, Saris L, Lo Schiavo F, Terzi M & Van Kammen A (1988b) Carrot somatic embryogenesis depends on the phytohormone-controlled expression of correctly glycosylated extracellular proteins. Genes Dev. 2: 462–476

    CAS  Google Scholar 

  • Flinn BS, Roberts DR & Taylor JEP (1991) Evaluation of somatic embryos of interior spruce. Characterization and develpomental regulation of storage proteins. Physiol. Plant. 82: 624–632

    Article  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell wall of angiosperms. Annu. Rev. Plant Physiol. 37: 165–186

    Article  CAS  Google Scholar 

  • Gregor D, Reinert J & Matsumoto H (1974) Changes in chromosomal proteins from embryo induced carrot cells. Plant & Cell Physiol. 15: 875–881

    CAS  Google Scholar 

  • Greppin H, Penel C & Gaspar T (1986).Molecular and Physiological Aspects of Plant Peroxidases. University of Geneva, Geneva, Switzerland.

    Google Scholar 

  • Hahne G, Mayer JE & L¨orz H (1988) Embryogenic and callusspecific proteins in somatic embryogenesis of the grass, Dactylis glomerata L. Plant Sci. 55: 267–279

    Article  CAS  Google Scholar 

  • Hilbert J-L, Dubois T & Vasseur J (1992). Detection of embryogenesis-related proteins during somatic embryo formation in Cichorium. Plant Physiol. Biochem. 30: 733–741

    CAS  Google Scholar 

  • Hvoslef-Eide AK & Corke FMK (1992) Embryogenesis specific protein changes in birch (Betula pendula Roth.) in vitro cultures. In Vitro Cell. & Dev. Biol. 28(3) Part II: 130A. Abstract P-1157

    Google Scholar 

  • Kiyosue T, Satoh S, Kamada H & Harada H (1991). Purification and immunohistochemical detection of an embryogenic cell protein in carrot. Plant Physiol. 95: 1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Kurt´en U, Nuutila AM, Kaupinen V & Rousi M (1990) Somatic embryogenesis in cell cultures of birch (Betula pendula Roth.). Plant Cell Tiss. Org. Cult. 23: 101–105

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–686

    Article  PubMed  CAS  Google Scholar 

  • McGee JD, Wiliams EG, Collins GB & Hildebrand DF (1989) Somatic embryogenesis in Trifolium: Protein profiles associated with high-and low-frequency regeneration. J. Plant Physiol. 135: 306–312

    CAS  Google Scholar 

  • Nabors MW, Heyser JW, Dykes TA & DeMott KJ (1983) Longduration, high-frequency plant regeneration from cereal tissue cultures. Planta 157: 385–391

    Article  Google Scholar 

  • Nuutila AM, Kurt´en U & Kaupinen V (1991) Optimization of sucrose and inorganic nitrogen concentrations for somatic embryogenesis of birch (Betula pendula Roth.) callus cultures: A statistical approach. Plant Cell Tiss. Org. Cult. 24: 73–77

    Article  CAS  Google Scholar 

  • Oakley BR, Kirsch DR & Morris NR (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361

    Article  PubMed  CAS  Google Scholar 

  • Ozawa K, Ling DH & Komanine A (1992) A two dimensional electrophoretic analysis of protein during somatic embryo formation in cell suspension cultures of Oryza In Vitro Cell. & Dev. Biol. 28(3) Part II: 129A. Abstract P-1156

    Google Scholar 

  • Ozeki Y & Komamine A (1986) Effects of growth regulators on the induction of anthocyanin synthesis in carrot suspension cultures. Plant Cell Physiol. 27: 1361–1368

    CAS  Google Scholar 

  • Roberts DR, Flinn BS, Webb DT, Webster FB & Sutton BCS (1989) Characterization of immature embryos of interior spruce by SDSPAGE and microscopy in relation to their competence for somatic embryogenesis. Plant Cell Rep. 8: 285–288

    Article  CAS  Google Scholar 

  • Savard S & Pauls P (1989) Protein patterns in somatic embryogenesis cultures of alfalfa. Plant Physiol. 89 (4 suppl): 11 (Abstract 65)

    Google Scholar 

  • Simola LK(1985) Propagation of plantlets from leaf callus of Betula pendula F purpurea. Scientia Hort. 26: 77–85

    Article  Google Scholar 

  • Sterk P & de Vries S (1993). Molecular markers for plant embryos.In: Synseeds. Applications of Synthetic Seeds to Crop Improvement, Redenbaugh K. (Ed.) (pp 115–132) CRC Press, London.

    Google Scholar 

  • Stirn S & Jacobsen H-J (1987) Marker proteins for embryogenic differentiation patterns in pea callus. Plant Cell Rep. 6: 50–54

    Article  CAS  Google Scholar 

  • Sung ZR & Okimoto R (1981) Embryonic proteins in somatic embryos of carrot. Proc. Natl. Acad. Sci. USA 78: 3683–3687

    Article  PubMed  CAS  Google Scholar 

  • Sung ZR & Okimoto R (1983) Coordinate gene expression during somatic embryogenesis in carrots. Proc. Natl. Acad. Sci. USA 80: 2661–2665

    Article  PubMed  CAS  Google Scholar 

  • Takeda J (1988) Light-induced synthesis of anthocyanin in carrot cells in suspension. I. The factors affecting anthocyanin production. J. Exp. Bot. 39: 1065–1077

    CAS  Google Scholar 

  • Takeda J (1990) Light-induced synthesis of anthocyanin in carrot cells in suspension. II. Effects of light and 2,4-D on induction and reduction of enzyme activities related to anthocyanin synthesis. J. Exp. Bot. 41: 749–755

    CAS  Google Scholar 

  • T¨orm¨al¨a T (1990) Genotype-fenotype interplay inmicropropagation. In: Nijkamp HJJ, Van Der Plas LHW & Van Aartrijk J (Eds) Progress in Plant Cellular and Molecular Biology (pp 102–107) Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hvoslef-Eide, A., Corke, F. Embryogenesis specific protein changes in birch suspension cultures. Plant Cell, Tissue and Organ Culture 51, 35–41 (1997). https://doi.org/10.1023/A:1017914312743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017914312743

Navigation