Skip to main content
Log in

Immunohistochemical Distribution of Cytochrome P4501A in Larvae and Fingerlings of the Siberian Sturgeon, Acipenser baeri

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

In this paper we investigate by means of immunohistochemistry, the tissue distribution of constitutive cytochrome P4501A (CYP1A), from hatching until 30 days posthatching in developing Siberian sturgeon, Acipenser baeri. For this purpose, a polyclonal (BN-1) antiserum developed against a conservative sequence of piscine CYP1A and a monoclonal (C10-7) antiserum directed against cod CYP1A were used on paraffin-embedded samples. From hatching onwards, distinct CYP1A immunoreactivity was distinctly observed in the following tissues and cells: envelope of oil droplets, matrix and syncytium of the yolk-sac, sinusoids, biliary epithelial cells and hepatocytes. In the digestive tract, buccopharyngeal, oesophageal, gastric and intestinal epithelia, as well as the cytoplasm and brush border of enterocytes were CYP1A-positive. Interestingly, gastric glands and melanin-plug present within lumen of the digestive system were strongly immunoreactive. Kidney (epithelia of renal tubules), gills (pillar and endothelial cells), skin (epithelial cells), muscle fibres of heart and eye (retina) were positive. In brain, we observed a strong CYP1A staining in the developing telencephalon and especially in olfactory system, as well as in those nerve fibres running ventrally toward the posterior brain. A strong CYP1A staining was observed in vascular endothelia of all organs/tissues, especially in the liver. In general, the intensity of CYP1A immunostaining increased during larval development, suggesting besides its known metabolic function (endogenous and/or exogenous), a possible participation of this heme-protein in control of cell division, regulation of growth and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andersson T, Goksøyr A (1994) Distribution and induction of cytochrome P4501A1 in the rainbowtrout brain. Fish Physiol Biochem 13: 335–342.

    Google Scholar 

  • Berndtson AK, Chen TT (1994) Two unique CYP1A genes are expressed in response to 3-methylcholanthrene treatment in rainbow trout. Arch Biochem Biophys 310: 187–195.

    Google Scholar 

  • Binder RL, Lech JJ (1984) Xenobiotics in gametes of Lake Michigan lake trout (Salvelinus namaycush) induce hepatic monooxygenase activity in their offspring. Fund Appl Toxicol 4: 1042–1054.

    Google Scholar 

  • Binder RL, Stegeman JJ (1980) Induction of aryl hydrocarbon hydroxylase activities in embryos of an estuarine fish. Biochem Pharmacol 29: 949–955.

    Google Scholar 

  • Binder RL, Stegeman JJ (1983) Basal levels and induction of hepatic aryl hydrocarbon hydroxylase activity during the embryonic period of development in brook trout. Biochem Pharmacol 32: 1324–1328.

    Google Scholar 

  • Binder RL, Stegeman JJ (1984) Microsomal electron transport and xenobiotic monooxygenase activities during embryonic period of development in the killifish, Fundulus heteroclitus. Toxicol Appl Pharmacol 73: 432–443.

    Google Scholar 

  • Binder RL, Stegeman JJ, Lech JJ (1985) Induction of cytochrome P-450-dependent monooxigenase systems in embryos and eleutheroembryos of the killifish, Fundulus heteroclitus. Chem Biol Interactions 55: 185–202.

    Google Scholar 

  • Buchmann A, Wannemacher R, Kulzer E, Buhler DR, Bock KW (1993) Immunohistochemical localization of cytochrome P450 isoenzymes LMC2 and LM4B (CYP1A1) in 2,3,7,8 Tetrachlorodibenzo-p-dioxintreated zebrafish (Brachydanio ratio). Toxicol Appl Pharmacol 123: 160–169.

    Google Scholar 

  • Buddington RK, Christofferson JP (1985) Digestive and feeding characteristics of the chondrosteans. Environ Biol Fish 14: 31–41

    Google Scholar 

  • Das M, Seth PIK, Mukhtar H (1981) NADPH-dependent inducible aryl hydrocarbon hydroxylase activity in rat brain mitochondria. Drug Metab Dispos 9: 69–70

    Google Scholar 

  • Dettlaff TA, Ginsburg AS, Schmalhausen OI (1993) Sturgeon fishes. Developmental Biology and Aquaculture. Springer-Verlag. Berlin.

    Google Scholar 

  • Dhawman A, Parmar D, Das M, Seth K (1990) Cytochrome P-450 dependent monooxygenase in neuronal and glial cells: Inducibility and specificity. Biochem Biophys Res Commun 170: 441–447.

    Google Scholar 

  • Elkus AA, Monosson E, McElroy AE, Stegeman JJ, Woltering DS (1999) Altered CYP1A expression in Fundulus heteroclitus adults and larvae: a sign of pollutant resistance? Aquatic Toxicology 45: 99–113.

    Google Scholar 

  • Gawlicka A, Teh SJ, Hung SSO, Hinton DE, De La Noüe J (1995) Histological and histochemical changes in the digestive tract of white sturgeon larvae during ontogeny. Fish Physiol Biochem 14: 357–371.

    Google Scholar 

  • Gisbert E (1999) Early development and allometric growth patterns in Siberian sturgeon and their ecological significance. J Fish Biol 54: 852–862.

    Google Scholar 

  • Gisbert E, Sarasquete C (2000) Histochemical identification of the blackbrown pigment granules found in the alimentary canal of Siberian sturgeon (Acipenser baeri) during the lecitotrophic stage. Fish Physiol Biochem 22: 349–354.

    Google Scholar 

  • Gisbert E, Rodriquez A, Williot P, Castello-Orvay F (1998) A histological study of the development of the digestive tract of Siberian sturgeon (Acipenser baeri) during early ontogeny. Aquaculture 167: 195–209.

    Google Scholar 

  • Gisbert E, Sarasquete C, Williot P, Castello-Orvay F (1999) Histochemistry of the development of the digestive system of Siberian sturgeon during early ontogeny. J Fish Biol 55: 596–616.

    Google Scholar 

  • Goksøyr A, Solberg TS (1987) Cytochromes P-450 in fish larvae: immunochemical detection of responses to oil pollution. Sarsia 72: 405–407

    Google Scholar 

  • Goksøyr A, Husoy AM (1998) Immunochemical approaches to studies of CYP1A localization and induction by xenobiotics in fish. Fish Ecotoxicol Basel: Birkhauser: 165–202.

    Google Scholar 

  • Goksøyr A, Solberg TS, Serigstad B (1991) Immunochemical detection of cytochrome P4501A1 induction in cod larvae and juveniles exposed to a water soluble fraction of North Sea crude oil. Mar Pollut Bull 22: 122–127.

    Google Scholar 

  • Gooneratne R, Miranda CL, Henderson MC, Buhler DR (1997) β-naphtoflavone induced CYP1A1 and CYP1A3 proteins in the liver of rainbow trout, Oncorhynchus mykiss. Xenobiotica 27: 175–187.

    Google Scholar 

  • Guiney PD, Smolowitz RM, Peterson RE, Stegeman JJ (1997) Correlation of 2,3,7,8-Tetrachlorodibenzo-p-dioxin induction of Cytochrome P4501A in vascular endothelium with toxicity in early life stages of Lake trout. Toxicol Appl Pharmacol 143: 256–273

    Google Scholar 

  • Heilmann LJ, Sheen YY, Bigelow SW, Nebert DW (1988) Trout P4501A1: cDNA and deduced protein sequence, expression in liver and evolutionary significance. DNA 7: 379–387.

    Google Scholar 

  • Henry TR, Spitsbergen JM, Hornung MW, Abnet CC, Peterson RE (1997) Early life stage toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in Zebrafish, Danio rerio. Toxicol Appl Pharmacol 142: 56–68.

    Google Scholar 

  • Husoy AM, Myers MS, Willis ML, Collier TK, Celander M, Goksøyr A (1994) Immunohistochemical localization of CYP1A and CYP3A-like isozymes in hepatic and extrahepatic tissues of Atlantic cod (Gadus morhua L.), a marine fish. Toxicol Appl Pharmacol 129: 294–308.

    Google Scholar 

  • Iscan M, Reuhl K, Weiss B Maines MD (1990) Regional and subcellular distribution of cytochrome P-450 dependent drug metabolism in monkey brain. The olfactory bulb and the mitochondrial fraction have high levels of activity. Biochem Biophys Res Commun 169: 858–863.

    Google Scholar 

  • Jacsik Z, Bihari N, Müller WEG, Zahn RK, Batel R (1998) Modulation of cytochrome P450 1A in sea bass liver by model substances and seawater extracts. Aquat Toxicol 40: 265–273.

    Google Scholar 

  • Miller MR, Hinton DE, Blair JJ, Stegeman JJ (1988) Immunohistochemical localization of cytochrome P-450E in liver, gill and heart of scup (Stenotomus chrysops) and rainbow trout (Salmo gairdneri). Mar Environ Res 24: 37–39.

    Google Scholar 

  • Monod G, Boudry MA, Gillet C (1996) Biotransformation enzymes and their induction by β-naphthoflavone during embryo-larval development in salmonid species. Comp Biochem Physiol 114C: 45–50.

    Google Scholar 

  • Nebert DW, Gonzalez FJ (1987) P450 genes. Structure, evolution and regulation. Ann Rev Biochem 56: 945–993.

    Google Scholar 

  • Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez F, Guengerich FP, Gunsalus IC, Jonson EF, Loper JC, Sato R, Watermanm MR, Waxman DJ (1991) The 450 superfamily: update on new sequences, gene, mapping, and recommended nomenclature. DNA Cell Biol 10: 1–14.

    Google Scholar 

  • Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MR, Estrabrook RW, Gunsalus IC, Nebert DW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacog 6: 1–42.

    Google Scholar 

  • Peters LD, Livingstone DR (1995) Studies of cytochrome P4501A in early life stages of turbot, Scophthalmus maximus. Mar Env Res 39: 5–9.

    Google Scholar 

  • Peters LD, Porte C, Albaigés J, Livingstone DR(1994) 7-Ethoxyresorufin O-deethylase (EROD) and antioxidant enzyme activities in larvae of sardine (Sardina pilchardus) from the north coast of Spain. Mar Pollut Bull 28: 299–304.

    Google Scholar 

  • Peters LD, O'Hara SCM, Livingstone DR (1996) Benzo(a)pyrene metabolism and xenobiotic-stimulated reactive oxygen species generation by subcellular fraction of larvae of turbot, Scophthalmus maximum. L. Comp Biochem Physiol 114C: 221–227.

    Google Scholar 

  • Reinecke M, Segner H (1998) Immunohistochemical localization of cytochrome P4501A in developing turbot, Scophthalmus maximus. Mar Environ Res 46: 487–492.

    Google Scholar 

  • Riebeiro L, Sarasquete C, Dinis MT (1999) Histological and histochemical characteristics during development of the Senegal sole, Solea senegalensis. Aquaculture 171: 291–306.

    Google Scholar 

  • Sarasquete C, Segner H (2000) Cytochrome P4501A (CYP1A) in teleostean fishes. A review of immunohistochemical studies. Sci Tot Environ 247: 313–332.

    Google Scholar 

  • Sarasquete C, Polo A, Yùfera M(1995) Histology and histochemistry of the development of the digestive system of larval gilthead seabream, Sparus aurata L. Aquaculture 130: 79–92.

    Google Scholar 

  • Sarasquete C, Muñoz Cueto JA, Ortiz JB, Rodríguez-Gomez FJ, Dinis MT, Segner H (1999) Immunocytochemical distribution of cytochrome P4501A (CYP1A) in developing gilthead seabream, Sparus aurata. Histol Histopathol 14: 407–415.

    Google Scholar 

  • Segner H, Storch V, Reinecke M, Kloas W (1994) The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus. Mar Biol 119: 471–486.

    Google Scholar 

  • Segner H, González de Canales ML, Sarasquete C (1998) Avances en Ecotoxicología Marina. Los citocromos P450 (CYP1A) como biomarcadores de la contaminación por compuestos xenobióticos y ensayos de citotoxicidad con líneas celulares de peces. In: Muñoz-Cueto JA, Miguel Mancera J, Piñuela C, Sarasquete C, eds. Estado Actual y Perspectivas en Acuicultura. Histofisiologίa, Histopatologίa y Biotoxicologίa. Servicio de Publicaciones. Universidad de Cádiz, pp. 71–94.

  • Smolowitz RM, Hahn ME, Stegeman JJ (1991) Immunohistochemical localization of cytochrome P450IA1 induced by 3,34′,4′-tetrachlorobiphenyl and by 2,3,7,8-tetrachlorodibenzofuran in liver and extrahepatic tissues of the teleost Stenotomus chrysops (scup). Drug Metab Dispos 19: 113–123

    Google Scholar 

  • Spitsbergen J, Walker KM, Olson JR, Peterson RE (1991) Pathologic lesions in early life stages of lake trout, Salvelinus namaycush, exposed to 2,3,7,8, tertachlorodibenzo-p-dioxin as fertilized eggs. Aquat Toxicol 19: 42–73.

    Google Scholar 

  • Stahl RG, Kocan RM (1986) Influence of age on patterns of uptake and excretion of policyclic aromatic hydrocarbons in the rainbow trout embryo. In: Poston TM, Pudrí R, eds. Aquatic Toxicology and Environmental Fate, 9. ASTM STP 921, American Society for Testing and Materials, pp. 287–303. Philadelphia, PA.

  • Stegeman JJ, Hahn ME (1994) Biochemistry and molecular biology of monooxygenases: current perspectives on forms, functions, and regulation of cytochrome P450 in aquatic species. In: Malins DC, Ostrander GK, eds. Boca Raton: Aquatic Publishers, pp. 87–203.

    Google Scholar 

  • Stegeman JJ, Smolowitz RM, Hahn ME (1991) Immunohistochemical localization of environmentally induced cytochrome P4501A1 in multiple organs of the marine teleost Stenotomus chrysops (scup). Toxicol Appl Pharmacol 110: 486–504

    Google Scholar 

  • Van Veld PA, Vetter RD, Lee RF, Patton JS (1987) Dietary fat inhibits the intestinal metabolism of the carcinogen benzo[a]pyrene in fish. J Lipid Res 28: 810–817.

    Google Scholar 

  • Van Veld PA, Vogelbein WK, Cochran MK, Goksøyr A, Stegeman JJ (1997) Route-specific cellular expression of cytochrome P4501A (CYP1A) in fish (Fundulus heteroclirus) following exposure to aqueous and dietary benzo[a]pyrene. Toxicol Appl Pharmacol 142: 348–359.

    Google Scholar 

  • Vieira L (2000) Histologia e histoquímica do tubo digestivo e organos anexos de pos-larvas e juvenis do Solea senegalensis (Kaup 1858) alimentados com diferentes dietas. Relatorio de estagio do curso de Licenciatura em Biolog´?a Marinha e Pescas. Univ do Algarbe Faro Portugal, 97 pp.

  • Vigano L, Arillo A, Bagnasco M, Bennicelli C, Melodia F (1993) Xenobiotic metabolizing enzymes in uninduced and induced rainbow trout: effects of diets and food deprivation. Comp Biochem Physiol 104C: 51–55.

    Google Scholar 

  • Vigano L, Arillo A, De Flora S, Lazorchak J (1995) Evaluation of microsomal and cytosolic biomarkers in a seven-day larval trout sediment toxicity test. Aquat Toxicol 31: 189–202.

    Google Scholar 

  • Walker MK, Cook PM, Batterman AR, Butterworth BC, Berini C, Libal JJ, Hulnagle LC, Peterson RE (1994) Translocation of 2,3,7,8,-tetrachlorodibenzo-p-dioxin from adult female lake trout (Salvelinus namaycush) to oocytes: effects on early life stage development and sac fry survival. Can J Fish Aquat Sci 51: 1410–1419

    Google Scholar 

  • Walther B, Guersi-Egea JF, Minn A, Siest G (1986) Subcellular distribution of cytochrome P450 in the brain. Brain Res 375: 338–344.

    Google Scholar 

  • Walther B, Guersi-Egea JF, Jayosi Z, Minn A, Siest G (1987) Ethoxyresorufin-O-deethylase activity in rat brain subcellular fraction. Neurosci Lett 76: 58–62.

    Google Scholar 

  • Williot P, Brun R, Rouault T, Rooryck O (1991) Management of female spawners of Siberian sturgeon, Acipenser baeri Brandt: first results. In: Williot P, ed. Acipenser. Actes du Colloque Bordeaux: Cemagref, pp. 365–379.

    Google Scholar 

  • Wisk JD, Cooper KR (1992) Effect of 2,3,7,8-tetrachlorodibenzop-dioxin and benzo(a)pyrene hydroxylase activity in embryos of the Japanese medaka (Oryzias latipes). Arch Toxicol 66: 245–249

    Google Scholar 

  • Zabel EW, Cook PR, Peterson RE (1995) Toxic equivalency factors of polychlorinated dibenzo-p-dioxin, dibenzofuran and biphenyl congeners based on early life stage mortality in rainbow trout, Oncorynchus mykiss. Aquat Toxicol 31: 315–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarasquete, C., Ortiz, J.B. & Gisbert, E. Immunohistochemical Distribution of Cytochrome P4501A in Larvae and Fingerlings of the Siberian Sturgeon, Acipenser baeri. Histochem J 33, 101–110 (2001). https://doi.org/10.1023/A:1017900314779

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017900314779

Keywords

Navigation