Skip to main content
Log in

Distribution of fitness effects caused by random insertion mutations in Escherichia coli

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Very little is known about the distribution of mutational effects on organismal fitness, despite the fundamental importance of this information for the study of evolution. This lack of information reflects the fact that it is generally difficult to quantify the dynamic effects of mutation and natural selection using only static distributions of allele frequencies. In this study, we took a direct approach to measuring the effects of mutations on fitness. We used transposon-mutagenesis to create 226 mutant clones of Escherichia coli. Each mutant clone carried a single random insertion of a derivative of Tn 10. All 226 mutants were independently derived from the same progenitor clone, which was obtained from a population that had evolved in a constant laboratory environment for 10,000 generations. We then performed competition experiments to measure the effect of each mutation on fitness relative to a common competitor. At least 80% of the mutations had a significant negative effect on fitness, whereas none of the mutations had a significant positive effect. The mutations reduced fitness by about 3%, on average, but the distribution of fitness effects was highly skewed and had a long, flat tail. A compound distribution, which includes both gamma and uniform components, provided an excellent fit to the observed fitness values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton, N.H. & M. Turelli, 1987. Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genetical Res. 49: 157-173.

    CAS  Google Scholar 

  • Barton, N.H. & M. Turelli, 1989. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genet. 23: 337-370.

    PubMed  CAS  Google Scholar 

  • Butcher, D., 1995. Muller's ratchet, epistasis and mutation effects. Genetics 141: 431-437.

    PubMed  CAS  Google Scholar 

  • Charlesworth, D., M.T. Morgan & B. Charlesworth, 1993. Mutation accumulation in finite outbreeding and inbreeding populations. Genetical Res. 61: 39-56.

    Google Scholar 

  • Chao, L., C. Vargas, B.B. Spear & E.C. Cox, 1983. Transposable elements as mutator genes in evolution. Nature 303: 633-635.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A.G., L. Wang & T. Hulleberg, 1995a. Spontaneous mutation rate of modifiers of metabolism in Drosophila. Genetics 139: 767-779.

    PubMed  CAS  Google Scholar 

  • Clark, A.G., L. Wang & T. Hulleberg, 1995b. P-element induced variation in metabolic regulation in Drosophila. Genetics 139: 337-348.

    PubMed  CAS  Google Scholar 

  • Crow, J.F. & M. Kimura, 1970. An Introduction to Population Genetics Theory. New York: Harper & Row.

    Google Scholar 

  • Drake, J.W., 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88: 7160-7164.

    Article  PubMed  CAS  Google Scholar 

  • Dykhuizen, D.E. & A.M. Dean, 1990. Enzyme activity and fitness: evolution in solution. Trends Ecol. Evol. 5: 257-262.

    Article  Google Scholar 

  • Dykhuizen, D.E. & D.L. Hartl, 1983. Selection in chemostats. Microbiol. Rev. 47: 150-168.

    PubMed  CAS  Google Scholar 

  • Elena, S.F. & R.E. Lenski, 1997. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390: 395-398.

    Article  PubMed  CAS  Google Scholar 

  • Gerrish, P.J. & R.E. Lenski, 1998. The fate of competing beneficial mutations in an asexual population. Genetica 102/103: 127-144.

    Article  PubMed  Google Scholar 

  • Gregory, W.C., 1965. Mutation frequency, magnitude of change and the probability of improvement in adaptation. Radiation Botany 5 (suppl.): 429-441.

    Google Scholar 

  • Haldane, J.B.S., 1927.Amathematical theory of natural and artificial selection. V. Selection and mutation. Proc. Camb. Phil. Soc. 23: 838-844.

    Article  Google Scholar 

  • Haldane, J.B.S., 1937. The effect of variation on fitness. Amer. Nat. 71: 337-349.

    Article  Google Scholar 

  • Hill, W.G. & J. Rasbash, 1986. Models of long-term artificial selection in finite population with recurrent mutation. Genetical Res. 48: 125-131.

    CAS  Google Scholar 

  • Houle, D., D.K. Hoffmaster, S. Assimacopoulos & B. Charlesworth, 1992. The genomic mutation rate for fitness in Drosophila. Nature 359: 58-60.

    Article  PubMed  CAS  Google Scholar 

  • Houle, D., B. Morikawa & M. Lynch, 1996. Comparing mutational variabilities. Genetics 143: 1467-1483.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138: 1315-1322.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993-1999.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1988. Quantitative genetic variability maintained by mutation-stabilizing selection balance in finite populations. Genetical Res. 52: 33-43.

    CAS  Google Scholar 

  • Kibota, T.T. & M. Lynch, 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381: 694-696.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1979. Model of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl. Acad. Sci., USA 76: 3440-3444.

    Article  PubMed  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kleckner, N., J. Bender & S. Gottesman, 1991. Uses of transposons with emphasis on Tn10. Meth. Enzymol. 204: 139-180.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1993. Classification of hypotheses on the advantage of amphimixis. J. Heredity 84: 372-387.

    CAS  Google Scholar 

  • Kondrashov, A.S., 1994. Muller's ratchet under epistatic selection. Genetics 136: 1469-1473.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1975. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genetical Res. 26: 221- 235.

    Article  CAS  Google Scholar 

  • Lande, R., 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity 50: 47-65.

    Google Scholar 

  • Lande, R., 1994. Risk of population extinction from fixation of new deleterious mutations. Evolution 48: 1460-1469.

    Article  Google Scholar 

  • Lenski, R.E., 1988. Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42: 425-432.

    Article  Google Scholar 

  • Lenski, R.E., 1992. Experimental evolution, pp. 125-140 in Encyclopedia of Microbiology, Vol. 2, edited by J. Lederberg. San Diego: Academic Press.

    Google Scholar 

  • Lenski, R.E., M.R. Rose, S. C. Simpson & S.C. Tadler, 1991. Longterm experimental evolution in Escherichia coli. I. Adaptation and divergence during 2000 generations. Amer. Nat. 138: 1315- 1341.

    Article  Google Scholar 

  • Lenski, R.E. & M. Travisano, 1994. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 91: 6808-6814.

    Article  PubMed  CAS  Google Scholar 

  • Levin, B.R. & R.E. Lenski, 1983. Coevolution in bacteria and their viruses and plasmids, pp. 99-127 in Coevolution, edited by D. J. Futuyma & M. Slatkin. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Levin, B.R., F.M. Stewart & L. Chao, 1977. Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Amer. Nat. 111: 3-24.

    Article  Google Scholar 

  • López, M.A. & C. López-Fanjul, 1993. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness. Genetical Res. 61: 117-126.

    Google Scholar 

  • Lyman, R.F., F. Lawrence, S.V. Nuzhdin & T.F.C. Mackay, 1996. Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143: 277-292.

    PubMed  CAS  Google Scholar 

  • Lynch, M., J. Conery & R. Bürger, 1995. Mutation accumulation and the extinction of small populations. Amer. Nat. 146: 489-518.

    Article  Google Scholar 

  • Lynch, M. & W. Gabriel, 1990. Mutation load and the survival of small populations. Evolution 44: 1725-1737.

    Article  Google Scholar 

  • Mackay, T.F.C., R.F. Lyman & M.S. Jackson, 1992. Effects of P element insertion on quantitative traits in Drosophila melanogaster. Genetics 130: 315-332.

    PubMed  CAS  Google Scholar 

  • Mukai, T., 1964. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1-19.

    PubMed  CAS  Google Scholar 

  • Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 333-335.

    Google Scholar 

  • Muller, H.J., 1950. Our load of mutations. Amer. J. Human Genet. 2: 111-176.

    CAS  Google Scholar 

  • Muller, H.J., 1964. The relation of recombination to mutational advance. Mutat. Res. 1: 2-9.

    Google Scholar 

  • Nguyen, T.N.M., Q.G. Phan, L.P. Duong, K.P. Bertrand & R.E. Lenski, 1989. Effects of carriage and expression of the Tn10 tetracycline resistance operon on the fitness of Escherichia coli K12. Mol. Biol. Evol. 6: 213-225.

    PubMed  CAS  Google Scholar 

  • Ohta, T., 1977. Extensions to the neutral mutation random drift hypothesis, pp. 148-167 in Molecular Evolution and Polymorphism, edited by M. Kimura. Mishima, Japan: National Institute of Genetics.

    Google Scholar 

  • Press, W.H., B.P. Flannery, S.A. Teukolsky & W.T. Vetterling, 1990. Numerical Recipes in Pascal. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sniegowski, P.D. & R.E. Lenski, 1995. Mutation and adaptation: the directed mutation controversy in evolutionary perspective. Ann. Rev. Ecol. Syst. 26: 553-578.

    Article  Google Scholar 

  • Sniegowski, P.D., P.J. Gerrish & R.E. Lenski, 1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387: 703-705.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, R.R. & F.J. Rohlf, 1981. Biometry, 2nd edition. New York: W. H. Freeman.

    Google Scholar 

  • Turelli, M., 1984. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor. Pop. Biol. 25: 138-193.

    Article  CAS  Google Scholar 

  • Wright, S., 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. Sixth. Intl. Congr. Genet. 1: 356-366.

    Google Scholar 

  • Wright, S., 1982. Character change, speciation, and the higher taxa. Evolution 36: 427-443.

    Article  Google Scholar 

  • Wright, S., 1988. Surfaces of selective value revisited. Amer. Nat. 131: 115-123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Lenski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elena, S.F., Ekunwe, L., Hajela, N. et al. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica 102, 349–358 (1998). https://doi.org/10.1023/A:1017031008316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017031008316

Navigation