Skip to main content
Log in

A Karyological Study of Some Corvine Birds (Corvidae, Aves)

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Karyotypes were studied in the hooded and carrion crows, their naturally occurred hybrids, the jungle crow, the azure-winged magpie (2n= 80 in all aforementioned birds), and the magpie (2n= 82). Corvine birds of Primorskii Krai were karyotyped for the first time. In addition to the similarity in the diploid chromosome sets, corvine birds were shown to have a similar structure of karyotype: in all studied birds, 14 macrochromosomes (Mchs) classified into three groups according to their size were detected. By karyotype structure, birds belonging to the same genus are similar. Some intergeneric differences are due to a change in the position of centromeres of the largest and sex chromosomes. Karyotypes of interspecific hybrids of crows are remarkable for the presence of heteromorphic (t/st) chromosome pair 2 in some individuals, which apparently does not affect their fecundity. Using differential C-banding, the sex chromosome W in female magpies was identified. In addition, heteromorphism was detected in C-bands of homologs of Mch pair 4 in the hooded crow. In the jungle crow, the azure-winged magpie, and the magpie, bright QH-bands and numerous G-bands were detected on Mchs and on some microchromosomes only. Active Ag-NOR-bands were detected on one macrochromosome pair in the magpie. In all, the karyotype structure of corvine birds is comparable to the basic structural scheme of the karyotype in the order Passeriformes, which confirms the concept of conservatism of the avian karyotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Srb, V. and Půža V, Cytogenetica ptaků,Praha: Acad. nokladatelstvi Československé Akademie věd, 1986.

    Google Scholar 

  2. Bulatova, N.Sh., Structure and Evolution of Avian Chromosomes, Tsitogenetika gibridov, mutatsii i evolyutsiya kariotipa (Cytogenetics of Hybrids, Mutations, and Evolution of the Karyotype), Khvostov, V.V., Ed., Novosibirsk: Nauka, 1977, pp. 248-259.

    Google Scholar 

  3. Bulatova, N.Sh., Grafodatskii, A.S., and Smirenskii, S.M., Karyotypes and Systematics of Palearctic Passerine Birds (Families Paridae, Ploceidae, Corvidae), Tezisy dokladov XVIII Mezhdunarodnogo ornitologicheskogo kongressa (Proc. XVIII Int. Ornithological Congr.), Moscow: Nauka, 1982, pp. 91-92.

    Google Scholar 

  4. Shields, G.F., Comparative Avian Cytogenetics, Condor, 1982, vol. 84, no. 1, pp. 45-58.

    Google Scholar 

  5. Goodwin, D., Crows of the World, Washington: Univ. Washington Press, 1986.

    Google Scholar 

  6. Van Brink, J.M., L'expression morphologique de la digamétie chez les sauropsidés et les monotrémes, Chromosoma, 1959, vol. 10, pp. 1-72.

    Google Scholar 

  7. Hammar V. The Karyotypes of Nine Birds, Hereditas (Lund, Swed.), 1966, vol. 55, pp. 367-385.

    Google Scholar 

  8. Jovanovic, V. and Atkins, L., Karyotypes of Four Passerine Birds Belonging to the Families Turdidae, Mimidae, and Corvidae, Chromosoma (Berlin), 1969, vol. 26, pp. 388-394.

    Google Scholar 

  9. Bulatova, N.Sh., Panov, E.N., and Radzhabli, S.I., Description of the Karyotypes of Several Bird Species of the USSR Fauna, Dokl. Akad. Nauk SSSR, 1971, vol. 199, no. 6, pp. 1420-1423.

    Google Scholar 

  10. Bulatova, N.Sh., Panov, E.N., and Radzhabli, S.I., Khromosomnye nabory ptits (Avian Chromosome Sets), Novosibirsk, 1972.

  11. Chromosome Atlas: Fish, Amphibians, Reptiles, and Birds, Becak, M.L. et al., Eds., Berlin: Springer-Verlag, 1973, vol. 2, Folio Av-17.

    Google Scholar 

  12. Ray-Chaudhuri, R., Cytotaxonomy and Chromosome Evolution in Birds, Cytotaxonomy and Vertebrate Evolution, Chiarelli, A.B. and Capanna, E., Eds., New York: Academic, 1973, pp. 425-484.

    Google Scholar 

  13. Bhunya, S.P. and Sultana, T., Somatic Chromosome Complements of Four Passerine Birds and Their Karyological Relationship, Caryologia, 1979, vol. 32, no. 3, pp. 299-309.

    Google Scholar 

  14. Mittal, O.P. and Sakhuja, S., Bone Marrow Chromosomes in Corvus Species (Corvidae: Passeriformes: Aves), Cytobios, 1980, vol. 29, no. 114, pp. 81-89.

    Google Scholar 

  15. Patnaik, S.C. and Prasad, R., Comparative Karyological Studies in Some 12 Species of Indian Passerine Birds, Z. Zool. Syst. Evolut.-Forsch., 1980, vol. 18, pp. 297-309.

    Google Scholar 

  16. Bulatova, N.Š., A Comparative Karyological Study of Passerine Birds, Acta. Sci. Nat. Brno, 1981, vol. 15, no. 3, pp. 1-44.

    Google Scholar 

  17. Ryttman, H. and Tegelström, H., Evolutionary Relationship as Chromosomes Revealed by G-band in Six Species of the Order Passeriformes (Aves), Uppsala: Univ. of Uppsala Press, 1981.

    Google Scholar 

  18. Belterman, R.H.R. and De Boer, L.E.M., A Karyological Study of 55 Species of Birds, Including Karyotypes of 39 Species New to Cytology, Genetica (The Hague), 1984, vol. 65, pp. 39-82.

    Google Scholar 

  19. Li, Q. and Bian, X., Studies on the Karyotypes of Birds: II. The 19 Species of 12 Families of Passerine Birds (Passeriformes, Aves), Zool. Res., 1988, vol. 9, no. 4, pp. 321-326.

    Google Scholar 

  20. Grafodatskii, A.S., Cytogenetic Aspects of Mammalian Phylogeny, Doctoral (Biol.) Dissertation, Novosibirsk: Inst. Cytol. Genet., 1991.

    Google Scholar 

  21. Stepanyan, L.S., Konspekt ornitologicheskoi fauny SSSR (Notes on the Ornithological Fauna of the Soviet Union), Moscow: Nauka, 1990.

    Google Scholar 

  22. Ford, C.F. and Hamerton, J.L., A Colchicine Hypotonic Citrate Squash Preparation for Mammalian Chromosomes, Stain Technol., 1956, vol. 31, pp. 247-251.

    Google Scholar 

  23. Christidis, L., Extensive Chromosomal Repattering in Two Congeneric Species: Pytilia melba L. and Pytilia phoenicoptera Swainson (Estrildidae; Aves), Cytogenet. Cell Genet., 1983, vol. 36, pp. 641-648.

    Google Scholar 

  24. Christidis, L., A Rapid Procedure for Obtaining Chromosome Preparations from Birds, Auk, 1985, vol. 102, no. 10, pp. 892-893.

    Google Scholar 

  25. Lee, M.R. and Elder, F.F., Yeast Stimulation of Bone Marrow Mitosis for Cytogenetic Investigations, Cytogenet. Cell Genet., 1980, vol. 26, no. 1, pp. 36-40.

    Google Scholar 

  26. Sumner, A.T., A Simple Technique for Demonstrating Centromeric Heterochromatin, Exp. Cell Res., 1972, vol. 75, pp. 304-306.

    Google Scholar 

  27. Bulatova, N.Sh. and Radzhabli, S.I., Chromosome Banding-A New Method of Comparative Cytological Studies in Birds, Zool. Zh., 1974, vol. 53, no. 11, pp. 116-117.

    Google Scholar 

  28. Wang, N. and Shoffner, R.N., Trypsin G-and C-Banding for Interchange Analysis and Sex Identification in the Chicken, Chromosoma, 1974, vol. 47, no. 1, pp. 61-69.

    Google Scholar 

  29. Yoshida, M.C., Ikeuchi, T., and Sasaki, M., Differential Staining of Parental Chromosomes in Interspecific Cell Hybrids with a Combined Quinacrine and 33258 Hoechst Technique, Proc. Jpn. Acad., 1975, vol. 51, pp. 184-187.

    Google Scholar 

  30. Münke, M. and Schmiady, H., A Simple One-Step Procedure for Staining the Nucleolus Organizer Regions, Experientia, 1979, vol. 35, pp. 602-603.

    Google Scholar 

  31. Levan, A., Fredga, K., and Sandberg, A.A., Nomenclature for Centromeric Position on Chromosomes, Hereditas (Lund, Swed.), 1964, vol. 52, pp. 201-220.

    Google Scholar 

  32. Yakovlev, A.F. and Trofimova, L.V., Changes in Microchromosome Number during Spiralization of Macrochromosomes in Gallus domesticus, Genetika (Moscow), 1977, vol. 13, no. 5, pp. 806-810.

    Google Scholar 

  33. Slizynski V. Cytological Observations on a Duck Hybrid, Anas clypeata × Anas penelope, Genet. Res., 1964, vol. 5, no. 3, pp. 441-447.

    Google Scholar 

  34. Kryukov, A.P. and Blinov, V.N., Interactions between Hooded and Carrion Crow (Corvus cornix L., C. corone L.) in a Zone of Sympatry and Hybridization: Does Selection against Hybrids Occur?, Zh. Obshch. Biol., 1989, vol. 50, no. 1, pp. 128-135.

    Google Scholar 

  35. Blinov, V.N., Blinova, T.K., and Kryukov, A.P., Interactions between Hooded and Carrion Crow (Corvus cornix L., C. corone L.) in a Zone of Sympatry and Hybridization: Structure of the Zone and Possible Isolation Factors, Gibridizatsiya i problema vida u pozvonochnykh (Hybridization and the Problem of Species in Vertebrates), Rossolimo, O.L., Ed., Moscow: Mosk. Gos. Univ., 1993, pp. 97-117.

    Google Scholar 

  36. Saino, N. and Villa, S., Pair Composition and Reproductive Success across a Hybrid Zone of Carrion Crows and Hooded Crows, Auk, 1992, vol. 109, no. 3, pp. 543-555.

    Google Scholar 

  37. Schmutz, S.M. and Oliphanf, L.W., Chromosome Study of Peregrine, Prairie, and Gyr Falcons with Implications for Hybrids, J. Hered., 1987, vol. 78, pp. 388-390.

    Google Scholar 

  38. Thorneycroft, H.B., A Cytogenetic Study of the White-Throated Sparrow, Zonotrichia albicollis (Gmelin), Evolution, 1975, vol. 29, pp. 611-621.

    Google Scholar 

  39. Rising, J.D. and Shields, G.F., Chromosomal and Morphological Correlates in Two New World Sparrows (Emberizidae), Evolution, 1980, vol. 34, no. 4, pp. 654-662.

    Google Scholar 

  40. Rocha, G.T., De Lucca, E.J., and De Souza, E.B., Chromosome Polymorphism Due to Pericentric Inversion in Zonotrichia capensis (Emberizidae—Passeriformes—Aves), Genetica (The Hague), 1990, vol. 80, pp. 201-207.

    Google Scholar 

  41. Shields, G.F., Bird Chromosomes, Current Ornithology, Johnston, R.F., Ed., 1983, vol. 1, pp. 189-209.

  42. Aquino, R. and Ferrary, I., Chromosome Study of Amazona amazonica and A. aestiva (Aves: Psittaciformes): Determination of Chromosome Number and Identification of Sex Chromosomes by C-Banding Methods, Genetica (The Hague), 1990, vol. 81, pp. 1-3.

    Google Scholar 

  43. Stock, A.D., Arrighi, F.E., and Stefos, K., Chromosome Homology in Birds: Banding Patterns of the Chromosomes of the Domestic Chicken, Ring-Necked Dove, and Domestic Pigeon, Cytogenet. Cell Genet., 1974, vol. 13, pp. 410-418.

    Google Scholar 

  44. Sasaki, M. and Nishida, C., Nucleolar Chromosomes of the Domestic Chicken and the Japanese Quail, Chrom. Inf. Serv., 1981, vol. 30, pp. 25-27.

    Google Scholar 

  45. Ansari, H.A., Takagi, N., and Sasaki, M., Interordinal Conservatism of Chromosome Banding Patterns in Gallus domesticus (Galliformes) and Melopsittacus undulatus (Psittaciformes), Cytogenet. Cell Genet., 1986, vol. 43, pp. 6-9.

    Google Scholar 

  46. Schmid, M., Enderle, E., Schindler, D., and Schempp, W., Chromosome Banding and DNA Replication Patterns in Bird Karyotypes, Cytogenet. Cell Genet., 1989, vol. 52, pp. 139-146.

    Google Scholar 

  47. Ansari, H.A., Takagi, N., and Sasaki, M., Morphological Differentiation of Sex Chromosomes in Three Species of Ratite Birds, Cytogenet. Cell Genet., 1988, vol. 47, pp. 185-188.

    Google Scholar 

  48. De la Sena, C.A., Fechheimer, N.S., and Nestor, K.E., Variability of C-Banding Patterns in Japanese Quail Chromosomes, Genome, 1991, vol. 34, no. 6, pp. 993-997.

    Google Scholar 

  49. Stock, A.D. and Mengden, G.A., Chromosome Banding Pattern Conservatism in Birds and Nonhomology of Chromosome Banding Patterns between Birds, Turtles, Snakes, and Amphibians, Chromosoma, 1975, vol. 50, pp. 69-77.

    Google Scholar 

  50. Rodionov, A.V., Micro vs. Macro: Structural and Functional Organization of Avian Micro-and Macrochromosomes, Genetika (Moscow), 1996, vol. 32, no. 5, pp. 597-608.

    Google Scholar 

  51. Schmid, M. and Guttenbach, M., Evolutionary Diversity of Reverse (R) Fluorescent Chromosome Bands in Vertebrates), Chromosoma (Berlin), 1988, vol. 97, pp. 101-114.

    Google Scholar 

  52. Padilla, J.A., Martinez-Trancon, M., Rabasco, A., and Fernandez-Garcia, J.L., The Karyotype of the Iberian Imperial Eagle (Aquila adalberti) Analyzed by Classical and DNA Replication Banding, Cytogenet. Cell Genet., 1999, vol. 84, nos. 1–2, pp. 61-66.

    Google Scholar 

  53. McQueen, H.A., Siriaco, G., and Bird, A.P., Chicken Microchromosomes Are Hyperacetylated, Early Replicating, and Gene Rich, Genome Res., 1998, vol. 8, no. 6, pp. 621-630.

    Google Scholar 

  54. Bloom, S.E. and Bacon, L.D., Linkage of the Major Histocompatibility (B) Complex and the Nucleolar Organizer in the Chicken: Assignment to a Microchromosome, J. Hered., 1985, vol. 76, no. 3, pp. 146-154.

    Google Scholar 

  55. Miller, M.M., Goto, R.M., Taylor, R.L., et al., Assignment of Rfp-Y to the Chicken Major Histocompatibility Complex/NOR Microchromosome and Evidence for High-Frequency Recombination Associated with the Nucleolar Organizer Region, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 9, pp. 3958-3962.

    Google Scholar 

  56. Sasaki, M., Nishida-Umehara, C., and Tsuchiya, K., Interspecific Variations in Centromeric C-Band of the Z Chromosome and Silver-Stained Nucleolus Organizer Regions (Ag-NORs) among Ten Species of Owls (Strigiformes), Chrom. Inf. Serv., 1994, no. 56, pp. 19-21.

    Google Scholar 

  57. Saitoh, Y., Ogawa, A., Hori, T., et al., Identification and Localization of Two Genes on the Chicken Z Chromosome: Implication of Evolutionary Conservatism of the Z Chromosome among Avian Species, Chromosome Res., 1993, vol. 1, no. 4, pp. 239-251.

    Google Scholar 

  58. Nanda, I., Sick, C., Munster, U., et al., Sex Chromosome Linkage of Chicken and Duck Type I Interferon Genes: Further Evidence of Evolutionary Conservatism of the Z Chromosome in Birds, Chromosoma, 1998, vol. 107, no. 3, pp. 204-210.

    Google Scholar 

  59. Panov, E.N. and Bulatova, N.Sh., Comparative Karyotypic Analysis in 18 Species of the Family Turdidae (Aves), Zool. Zh., 1972, vol. 51, no. 9, pp. 1371-1380.

    Google Scholar 

  60. Fridolfsson, A.-K., Cheng, H., Copeland, N.G., et al., Evolution of the Avian Sex Chromosomes from an Ancestral Pair of Autosomes, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 8147-8152.

    Google Scholar 

  61. Griffiths, R., Double, M.C., Orr, K., and Dawson, R.J., DNA Test to Sex Most Birds, Mol. Ecol., 1998, vol. 7, no. 8, pp. 1071-1075.

    Google Scholar 

  62. Shetty, S., Griffin, D.K., and Graves, J.A., Comparative Painting Reveals Strong Chromosome Homology over 80 Million Years of Bird Evolution, Chromosome Res., 1999, vol. 7, no. 4, pp. 289-295.

    Google Scholar 

  63. Madsen, C.S., de Kloet, D.H., Brooks, J.E., and de Kloet, S.R., Highly Repeated DNA Sequences in Birds: The Structure and Evolution of an Abundant, Tandemly Repeated 190-bp DNA Fragment in Parrots, Genomics, 1992, vol. 14, no. 2, pp. 462-469.

    Google Scholar 

  64. Madsen, S.S., Brooks, J.E., de Kloet, E., and de Kloet, S.R., Sequence Conservation of an Avian Centromeric Repeated DNA Component, Genome, 1994, vol. 37, no. 3, pp. 351-355.

    Google Scholar 

  65. Takagi, N. and Sasaki, M., A Phylogenetic Study of Bird Karyotypes, Chromosoma (Berlin), 1974, vol. 46, pp. 91-120.

    Google Scholar 

  66. Bulatova, N.Sh., Comparative Karyology of Birds (Cytotaxonomic and Evolutionary Aspects), Abstracts of Cand. Sci. (Biol.) Dissertation, Novosibirsk: Inst. Cytol. Genet., 1975.

    Google Scholar 

  67. Prager, E.M. and Wilson, A.C., Slow Evolutionary Loss of the Potential for Interspecific Hybridization in Birds: A Manifestation of Slow Regulatory Evolution, Proc. Natl. Acad. Sci. USA, 1975, vol. 72, no. 1, pp. 200-204.

    Google Scholar 

  68. Tegelström, H., Ebenhard, T., and Ryttman, H., Rate of Karyotype Evolution and Speciation in Birds, Hereditas (Lund, Swed.), 1983, vol. 98, pp. 235-239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roslik, G.V., Kryukov, A.P. A Karyological Study of Some Corvine Birds (Corvidae, Aves). Russian Journal of Genetics 37, 796–806 (2001). https://doi.org/10.1023/A:1016703127516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016703127516

Keywords

Navigation