Skip to main content
Log in

Sixty-Five Years of Searching for the Signals That Trigger Flowering

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This review summarizes the long-term research of photoperiodic flower induction in two Chenopodium species, one of which, C. rubrum, is a short-day plant, while the other, C. murale, is a long-day plant. In the course of purification of “florigenic” extracts inducing flowering in C. rubrum plants kept under noninductive photoperiodic conditions, we did not succeed in identifying its active component(s). During the inductive treatment, the phloem transport of cytokinins was enhanced and their content in the shoot apex greatly increased for some time. The review also summarizes the results of the application of direct electric current to the leaves of C. rubrum plants. This treatment interferes with the transport of some active signal(s) from leaves to the apex, resulting in the inhibition of flowering induction. The problem of the rhythmicity of flowering in C. rubrum plants was considered, particularly, the possibility of melatonin (N-acetyl-5-methoxytryptamin) participation in photoperiodic induction. Melatonin accumulation in darkness appears to determine the amplitude of the flowering rhythm but not its phase or period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Martinez-Zapater, J.M., Coupland, G., Dean, C., and Koornneef, M., The Transition to Flowering in Arabidopsis, Arabidopsis, Meyerowitz, E.M. and Sommer-ville, E., Eds., Cold Spring Harbor: Cold Spring Harbor Lab., 1994, pp. 403–434.

    Google Scholar 

  2. Yanoffsky, M.F., Floral Meristem to Floral Organs: Genes Controlling Early Events in Arabidposis Flower Development, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, vol. 46, pp. 167–188.

    Google Scholar 

  3. Koornneef, M., Alonso-Blanco, C., Peeters, A.J.M., and Soppe, W., Genetic Control of Flowering Time in Arabidopssis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, vol. 49, pp. 345–370.

    Google Scholar 

  4. Wagner, E., Molecular Basis of Physiological Rhythms, Soc. Exp. Biol., Symp. 31, Cambridge: Cambridge Univ., 1977, pp. 33–72.

    Google Scholar 

  5. Ullmann, J., Seidlová, F., Krekule, J., and Pavlová, L., Chenopodium rubrum as a Model Plant for Testing the Flowering Effects of PGRs, Biol. Plant., 1985, vol. 27, pp. 367–372.

    Google Scholar 

  6. Cumming, B.G., Circadian Rhythms of Flower Induction and Their Significance in Photoperiodic Response, Can. J. Bot., 1969, vol. 47, pp. 309–324.

    Google Scholar 

  7. King, R.W. and Cumming, B.C., The Role of Phytochrome in Photoperiodic Time Measurement and Its Relation to Rhythmic Time-Keeping in the Control of Flowering in Chenopodium rubrum, Planta, 1972, vol. 108, pp. 39–57.

    Google Scholar 

  8. King, R.W., Timing in Chenopodium rubrum of Export of Floral Stimulus from the Cotyledons and Its Action at the Shoot Apex, Can. J. Bot., 1972, vol. 50, pp. 697–702.

    Google Scholar 

  9. King, R.W., Multiple Circadian Rhythms Regulate Flowering Responses in Chenopodium rubrum, Can. J. Bot., 1975, vol. 53, pp. 2631–2638.

    Google Scholar 

  10. Pavlová, L., Součková, D., Ullmann, J., and Krekule, J., The Transition to Reproductive Phase in Chenopodium murale L. Ecotype 197-Early Flowering Long-Day Plant, Biol. Plant., 1989, vol. 31, pp. 386–391.

    Google Scholar 

  11. Chailakhyan, M.Kh., About the Mechanism of Photoperiodic Reaction, Dokl. Akad. Nauk SSSR, 1936, vol. 1, pp. 85–89.

    Google Scholar 

  12. Chailakhyan, M.Kh., About the Hormonal Theory of Plant Development, Dokl. Akad. Nauk SSSR, 1936, vol. 3, pp. 443–447.

    Google Scholar 

  13. Lang, A., Gibberellin and Flower Formation, Naturwissenschaften, 1956, vol. 43, pp. 544–549.

    Google Scholar 

  14. Chailakhyan, M.Kh., The Effect of Gibberellins on Plant Growth and Flowering, Dokl. Akad. Nauk SSSR, 1957, vol. 117, pp. 1077–1080.

    Google Scholar 

  15. Chailakhyan, M., Lozhnikova, V., Seidlová, F., Krekule, J., Dudko, N., and Negretzky, V., Floral and Growth Responses in Chenopodium rubrum L. to an Extract from Flowering Nicotiana tabacum L., Planta, 1989, vol. 178, pp. 143–146.

    Google Scholar 

  16. Fujioka, S. and Sakurai, A., Conversion of Lysine to L-Pipecolinic Acid Induces Flowering in Lemna paucicostata, Plant Cell Physiol., 1997, vol. 38, pp. 1278–1280.

    Google Scholar 

  17. Jaffe, L. and Nuccitelli, R., Electrical Controls of Development, Annu. Rev. Biophys. Bioeng., 1977, vol. 6, pp. 445–476.

    Google Scholar 

  18. Adamec, L. and Krekule, J., Changes in Transorgan Electric Potential in Chenopodium rubrum during the Course of Photoperiodic Flower Induction, Biol. Plant., 1989, vol. 31, pp. 344–353.

    Google Scholar 

  19. Montavon, M. and Greppin, H., Effet sur le développement de l'épinard et l'application d'un potentiel électrique sur le petiole d'une feuille, Saussurea, 1983, vol. 14, pp. 79–85.

    Google Scholar 

  20. Montavon, M. and Greppin, H., Développement apical de l'épinard et l'application d'un potentiel électrique de contrainte, Saussurea, 1986, vol. 17, pp. 85–91.

    Google Scholar 

  21. Adamec, L., Macháčková, I., Krekule, J., and Nováková, M., Electric Current Inhibits Flowering in the ShortDay Plant Chenopodium rubrum L., J. Plant Physiol., 1989, vol. 134, pp. 43–46.

    Google Scholar 

  22. Macháčková, I., Pospišková, M., and Krekule, J., Further Studies on the Inhibitory Action of Direct Electric Current on Flowering in the Short-Day Plant Chenopodium rubrum L., J. Plant Physiol., 1990, vol. 136, pp. 381–384.

    Google Scholar 

  23. Macháčková, I. and Krekule, J., The Interaction of Direct Electric Current with Endogenous Rhythms of Flowering in Chenopodium rubrum L., J. Plant Physiol., 1991, vol. 138, pp. 364–369.

    Google Scholar 

  24. Pavlová, L. and Krekule, J., The Effect of IAA Application on Endogenous Rhythm of Flowering in Chenopodium rubrum L., Biol. Plant., 1990, vol. 32, pp. 277–287.

    Google Scholar 

  25. Filek, M., Biesaga-Koscielniak, J., Marcinska, I., Krekule, J., and Macháčková, I., Direct Electric Current Replaces Partly the Chilling Effect in Vernalization of Winter Wheat, J. Plant Physiol., 2002, vol. 159 (in press).

  26. Wagner, E. and Cumming, B.G., Betacyanin Accumulation, Chlorophyll Content and Flower Initiation in Chenopodium rubrum as Related to Endogenous Rhythmicity and Phytochrome Action, Can. J. Bot., 1970, vol. 48, pp. 1–18.

    Google Scholar 

  27. Wagner, E., Bonzon, M., Normann, J., Albrechtová, J.P.T., Macháčková, I., and Greppin, H., Signal Transduction and Metabolic Control of Timing in Photoperiodism. The Case of Flower Initiation, Vistas on Biorhythmicity, Greppin, H. et al., Eds., Geneva: Univ. Gen., 1996, pp. 3–23.

    Google Scholar 

  28. Bernier, G., The Control of Floral Evocation and Morphogenesis, Annu. Rev. Plant Physiol., 1988, vol. 39, pp. 175–219.

    Google Scholar 

  29. Bernier, G., Havelange, A., Houssa, C., Petitjean, A., and Lejeune, P., Physiological Signals That Induce Flowering, Plant Cell., 1993, vol. 5, pp. 1147–1155.

    Google Scholar 

  30. Macháčková, I., Eder, J., Motyka, V., Hanuš, J., and Krekule, J., Photoperiodic Control of Cytokinin Transport and Metabolism in Chenopodium rubrum, Physiol. Plant., 1996, vol. 98, pp. 564–570.

    Google Scholar 

  31. Havelange, A., Lejeune, P., and Bernier, G., Sucrose/Cytokinin Interaction in Sinapis alba at Floral Induction: A Shoot-to-Root-to-Shoot Physiological Loop, Physiol. Plant., 2000, vol. 109, pp. 343–350.

    Google Scholar 

  32. Henson, I.E. and Wareing, Ph.F., Cytokinins in Xanthium strumarium L.: Some Aspects of the Photoperiodic Control of Endogenous Levels, New Phytol., 1977, vol. 78, pp. 35–45.

    Google Scholar 

  33. Lejeune, P., Kinet, J.-M., and Bernier, G., Cytokinin Fluxes during Floral Induction in the Long-Day Plant Sinapis alba L., Plant Physiol., 1988, vol. 86, pp. 1095–1098.

    Google Scholar 

  34. Macháčková, I., Krekule, J., Eder, J., Seidlová, F., and Strnad, M., Cytokinins in Photoperiodic Induction of Flowering in Chenopodium rubrum, Physiol. Plant., 1993, vol. 87, pp. 160–166.

    Google Scholar 

  35. Krekule, J., Photoperiodic Control of Flowering: Various Signals and Their Roles, Fiziol. Rast (Moscow) 1997, vol. 44, pp. 146–155(Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  36. Reiter, R.J., The Melatonin Rhythm: Both a Clock and a Calendar, Experientia, 1993, vol. 49, pp. 654–664.

    Google Scholar 

  37. Klein, D.C. and Weller, J.L., Indole Metabolism in the Pineal Gland: A Circadian Rhythm in N-Acetyltransferase, Science, 1970, vol. 169, pp. 1093–1095.

    Google Scholar 

  38. King, T.S. and Steinlechner, S., Pineal Indolealkylamine Synthesis and Metabolism: Kinetic Considerations, Pineal Research Review, Reiter, R.J., Ed., New York: Liss, 1985, vol. 3, pp. 69–113.

    Google Scholar 

  39. Balzer, I. and Hardeland, R., Photoperiodism and Effects of Indoleamines in a Unicellular Alga, Gonyaulax polyedra, Science, 1991, vol. 253, pp. 795–797.

    Google Scholar 

  40. Poegeller, B., Balzer, I., Hardeland, R., and Lerchl, A., Pineal Hormone Melatonin Oscillates Also in the Dinoflagellate Gonyaulax polyedra, Naturwissenschaften, 1991, vol. 78, pp. 268–269.

    Google Scholar 

  41. Balzer, I., Poegeller, B., and Hardeland, R., Circadian Rhythms of Indoleamines in a Dinoflagellate, Gonyulax polyedra: Persistence of Melatonin Rhythm in Constant Darkness and Relationship to 5-Methoxytryptamine, Melatonin and the Pineal Gland, Touitou, Y. et al., Eds., Excerpta Medica, 1993, pp. 83–116.

  42. Lorenz, M. and Lunning, K., Detection of Endogenous Melatonin in the Marine Red Macroalgae Porphyra umbilicalis and Palmaria palmata by Enzyme-Linked Immunoassay (ELISA) and Effects of Melatonin Administration on Algal Growth, Proceedings of the Conference News from the Plant Chronobiology Research, Rostock: Rostock. Univ., 1998, pp. 28–29.

    Google Scholar 

  43. Fuhrberg, B., Balzer, I., Hardeland, R., Werner, A., and Lunning, K., The Vertebrate Pineal Hormone Melatonin Is Produced by the Brown Alga Pterygophora californica and Mimics Dark Effects on Growth Rate in Light, Planta, 1996, vol. 200, pp. 125–131.

    Google Scholar 

  44. Balzer, I., Bartolomaeus, B., and Hocker, B., Ciarcadian Rhythm of Melatonin Content in Chlorophyceae, Proceedings of the Conference News from the Plant Chronobiology Research, Rostock: Rostock Univ., 1998, pp. 11–12.

    Google Scholar 

  45. Kolář, J. and Macháčková, I., Melatonin: Does It Regulate Rhythmicity and Photoperiodism Also in Higher Plants? Flower. Newsletter, 1994, vol. 17, pp. 53–54.

    Google Scholar 

  46. Van Tassel, D.L., Roberts, N.J., and O'Neill, S.D., Melatonin from Higher Plants: Isolation and Identification of N-Acetyl-5-methoxytryptamine, Plant Physiol., 1995, vol. 108, Suppl., p. 101.

    Google Scholar 

  47. Dubbels, R., Reiter, R.J., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., Schiwara, H.W., and Schloot, W., Melatonin in Edible Plants Identified by Radioimmunoassay and by High Performance Liquid Chromatography-Mass Spectrometry, J. Pineal Res., 1995, vol. 18, pp. 28–31.

    Google Scholar 

  48. Hattori, A., Migitaka, H., Iigo, M., Itho, M., Yamamoto, K., Ohtanikaneko, R., Hara, R., Suzuki, T., and Reiter, R.J., Identification of Melatonin in Plants and Its Effect on Plasma Melatonin Levels and Binding to Melatonin Receptor in Vertebrates, Biochem. Mol. Biol. Int., 1995, vol. 35, pp. 627–634.

    Google Scholar 

  49. Kolář, J., Macháčková, I., Eder, J., Prinsen, E., van Dongen, W., van Onckelen, H., and Illnerová, H., Melatonin: Occurrence and Daily Rhythm in Chenopodium rubrum, Phytochemistry, 1997, vol. 44, pp. 1407–1413.

    Google Scholar 

  50. Wolf, K., Kolář, J., van Dongen, W., van Onckelen, H., and Machá ková, I., Daily Profile of Melatonin Levels in Chenopodium rubrum L. Depends on Photoperiod, J. Plant Physiol., 2001, vol. 158, pp. 1447–1453.

    Google Scholar 

  51. Wiesenberg, I., Missbach, M., Kahlen, J.-P., Schrader, M., and Carlberg, C., Transcriptional Activation of the Nuclear Receptor RZR α by the Pineal Gland Hormone Melatonin and Identification of CGP 52608 as a Synthetic Ligand, Nucleic Acids Res., 1995, vol. 23, pp. 327–333.

    Google Scholar 

  52. Kolář, J., Wolf, K., Johnson, C., and Macháčková, I., Melatonin Occurrence and Possible Function in Chenopodium rubrum, News from the Chronobiology Research, Proceedings of the 2nd Workshop of the European Society for Chronobiology. Rostock: Rostock Univ., 2000, p. 17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machácčková, I., Krekule, J. Sixty-Five Years of Searching for the Signals That Trigger Flowering. Russian Journal of Plant Physiology 49, 451–459 (2002). https://doi.org/10.1023/A:1016395405884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016395405884

Navigation