Skip to main content
Log in

Is the Beneficial Effect of Calcium Channel Blockers Against Cyclosporine A Toxicity Related to a Restoration of ATP Synthesis?

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

ATP synthesis inhibited by Cyclosporine A is restored by calcium channel blockers: nifedipine, verapamil, bepridil, diltiazem. ATP synthesis was estimated using liver mitochondria by measuring the rate of respiration during state 3 and a measure of the yield of ATP synthesis, the P/O ratio. The study of calcium fluxes through mitochondrial membrane indicates that calcium channel blockers counteract the mitochondrial calcium storage induced by Cyclosporine A. If the restoration of ATP synthesis observed in vitro also occurred in vivo, the increase in ATP pool might contribute to a better functioning of the Ca2+ extrusion pumps of the cells, thereby maintaining the cytosolic calcium concentration (Cai) in the normal range. The nephrotoxicity of Cyclosporine A appears to be due to a vasoconstrictive effect related to an increased Cai This result may account for the reduction of clinical Cyclosporine A toxicity by calcium channel blockers. Verapamil appears to be the most efficient in restoring ATP synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. G. Luke. Mechanism of Cyclosporine induced hypertension. Am J Hypert 4, 468–471 (1991).

    Google Scholar 

  2. J. S. Abraham, F. R. Bentley, R. N. Garrison, H. M. Cryer. Cyclosporine A directly constricts intrarenal arterioles. Transplant Proc 23, 356–359 (1991).

    Google Scholar 

  3. N. Fournier, G. Ducet, and A. Crevat. Action of Cyclosporine A on mitochondrial calcium fluxes. J. Bioenenerg Biomembrane 19, 297–303 (1987).

    Google Scholar 

  4. C. Richter, M. Theus, J. Schlegel. Cyclosporine A inhibits mitochondrial pyridine nucleotide hydrolysis and calcium release. Biochem Pharmacol 4, 779–782 (1990).

    Google Scholar 

  5. KM. Broekemeier, ME. Dempsey, DR. Pfeiffer. Cyclosporine A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264, 7826–7830 (1989).

    Google Scholar 

  6. P. Bernardini, P. Veronese, V. Petronilli. Modulation of the mitochondrial cyclosporine A sensitive permeability transition pore. J Biol Chem 268, 1005–1010 (1993).

    Google Scholar 

  7. M. Tuena De Gomes-Puyou, MN. Gavilanes, A. Gomes-Puyou, C. Ernster. Control of activity states of heart mitochondrial ATPase. Role of the proton-motive force and Ca2+. Biochim Biophys Acta 592, 336–405 (1980).

    Google Scholar 

  8. M. D. Salducci, A. M. Chauvet-Monges, Y. Berland, B. Dussol, R. Elsen, A. Crevat. The restoration of ATP synthesis may explain the protective effect of calcium channel blocker against Cyclosporine A nephrotoxicity. Life Sci 50, 2053–2058 (1992).

    Google Scholar 

  9. H. Meyer-Lehnert, U. Friedrichs, D. Bokemeyer, S. Drechsler, H. J. Kramer. Cyclosporin A-induced calcium accumulation in glomerular mesangial cells. Inhibition by atrial natriuretic peptide (ANP) (abstract). J Amer Soc Nephrol 4, 756, (1993).

    Google Scholar 

  10. I. Dawidson, P. Rooth, W. R. Fry et al. Prevention of acute cyclosporine-induced renal blood flow inhibition and improved immunosuppression with verapamil. Transplantation 48, 575–580 (1989).

    Google Scholar 

  11. J. E. Scoble, J. C. M. Senior, P. Chan, Z. Varghese, P. Swery, J. F. Moorhead. In vitro Cyclosporine toxicity. Transplantation 47, 647–650 (1989).

    Google Scholar 

  12. G. Johnson, H. Lardy. Isolation of liver or kidney mitochondria. In P. W. Estabrook and M. Pullman, Methods in Enzymology, Academic Press New York, 1967, p. 94–96.

    Google Scholar 

  13. G. Ubeaud, A. M. Chauvet-Monges, J. P. Monti, J. P. Tillement, and A. Crevat. Calcium antiionophoretic effect of some calcium channel blockers in rat liver mitochondria. J Pharm Sci 83, 165–168 (1994).

    Google Scholar 

  14. M. Spedding. Calcium antagonist subgroups. Trends Pharmacol Sci 3, 109–114 (1985).

    Google Scholar 

  15. J. Brockmöller, H. H. Neumayer, K. Wagner, W. Weber, G. Heinemeyer, H. Kewitz, and I. Roots. Pharmacokinetic interaction between cyclosporin and diltiazem. Eur J Clin Pharmacol 38, 237–242 (1990).

    Google Scholar 

  16. G. E. N. Kass, M. J. Juedes, S. Orrenius. Cyclosporine A protects hepatocytes against prooxidant-induced cell killing. Biochem Pharmacol 44, 1995–2003 (1992).

    Google Scholar 

  17. C. Richter, J. Schlegel. Mitochondrial calcium release induced by prooxidants. Toxicol Lett 67, 119–127 (1993).

    Google Scholar 

  18. R. B. Khauli, T. Strzelecki, S. Kumar, M. Fink, J. Stoff, M. Menon. Mitochondrial alterations after Cyclosporine and ischemia, Insights on the pathophysiology of nephrotoxity. Transplant Proc 19, 1395–1397 (1987).

    Google Scholar 

  19. D. C. Pang, N. Sperelakin. Nifedipine, Diltiazem, Bepridil and Verapamil uptake into cardiac and smooth muscles. Eur J Pharmacol 87, 199–207 (1983).

    Google Scholar 

  20. G. Zernig, I. Graziadei, T. Moshammer, C. Zech, N. Reider, H. Glossmann. Mitochondrial Ca2+ antagonists binding sites are associated with an inner mitochondrial membrane anion channel. Mol Pharmacol 38, 362–369 (1990).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salducci, M.D., Chauvet-Monges, A.M., Dussol, B.M. et al. Is the Beneficial Effect of Calcium Channel Blockers Against Cyclosporine A Toxicity Related to a Restoration of ATP Synthesis?. Pharm Res 12, 518–522 (1995). https://doi.org/10.1023/A:1016293627487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016293627487

Navigation