Skip to main content
Log in

Influence of TNFα on the sialylation of mucins produced by a transformed cell line MM-39 derived from human tracheal gland cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In order to investigate the influence of inflammation on the peripheral glycosylation of airway mucins, a human respiratory glandular cell line (MM-39) was treated by TNFα. The expression and the activity of sialyl- and fucosyl-transferases, involved in the biosynthesis of peripheral carbohydrate determinants like sialyl-Lewis x, were investigated by RT-PCR and by HPAEC respectively. The mRNA steady-state level of sialyl- (ST3Gal III) and of fucosyl- (FUT3) transferases was moderately up-regulated by TNFα; a 52% increase of α2,3-sialyltransferase activity was also observed in TNFα-stimulated MM-39 cells. After metabolic radio-labelling with [3H]glucosamine and [3H]fucose, the mucins released in␣the culture supernatant were purified by Sepharose CL-4B, density-gradient centrifugation and treatment with glycosaminoglycans-degrading enzymes. The mucins, released in the culture supernatant from control MM-39 cells, were constituted by two populations of molecules having the same 1.39–1.44 mg/ml density but carrying either high or low amounts of sialic acid residues at their periphery. TNFα was able to increase the sialylation of the weakly sialylated mucins. This effect and the enhancement of the α2,3-sialyltransferase activity by TNFα argue in favour of a regulation of the mucin sialylation by this pro-inflammatory cytokine. Despite the moderate overexpression of FUT3, no fucosylation of mucins produced by MM-39 cells was induced by TNFα. In conclusion, the influence of TNFα on the sialylation of mucins could explain why the mucins from infected patients suffering either from cystic fibrosis or from chronic bronchitis are more sialylated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poüs C, Chauvelot-Moachon L, Lecoustillier M, Durand G, Recombinant human interleukin 1 beta and tumor necrosis factor affect glycosylation of serum alpha 1-acid glycoprotein in rats, Inflammation 16, 197-203 (1992).

    Google Scholar 

  2. de Graaf TW, van der Stelt ME, Anbergen MG, van Dijk W, Inflammation-induced expression of sialyl Lewis X-containing glycan structures on alpha 1-acid glycoprotein (orosomucoid) in human sera, J Exp Med 177, 657-66 (1993).

    Google Scholar 

  3. van Dijk W, Havenaar EC, Brinkman-van der Linden EC, Alpha 1-acid glycoprotein (orosomucoid): pathophysiological changes in glycosylation in relation to its function, Glycoconjugate J 12, 227-33 (1995).

    Google Scholar 

  4. van Dijk W, Brinkman-Van der Linden EC, Havenaar EC, Occurrence and possible function of inflammation-induced expression of sialyl Lewis-x on acute-phase proteins, Adv Exp Med Biol 435, 145-50 (1998).

    Google Scholar 

  5. Brinkman-van der Linden EC, de Haan PF, Havenaar EC, van Dijk W, Inflammation-induced expression of sialyl LewisX is not restricted to alpha1-acid glycoprotein but also occurs to a lesser extent on alpha1-antichymotrypsin and haptoglobin, Glycoconjugate J 15, 177-82 (1998).

    Google Scholar 

  6. Renkonen R, Mattila P, Majuri ML, Räbinä J, Toppila S, Renkonen J, Hirvas L, Niittymäki J, Turunen JP, Renkonen O, Paavonon T, In vitro experimental studies of sialyl Lewis x and sialyl Lewis a on endothelial and carcinoma cells: crucial glycans on selectin ligands, Glycoconjugate J 14, 593-600 (1997).

    Google Scholar 

  7. Lamblin G, Boersma A, Klein A, Roussel P, van Halbeek H, Vliegenthart JFG, Primary structure determination of five sialylated oligosaccharides derived from bronchial mucus glycoproteins of patients suffering from cystic fibrosis, The occurrence of the NeuAc alpha(2-3)Gal beta(1-4)[Fuc alpha(1-3)] GlcNAc beta(1-.) structural element revealed by 500-MHz 1H NMR spectroscopy, J Biol Chem 259, 9051-58 (1984).

    Google Scholar 

  8. Breg J, van Halbeek H, Vliegenthart JFG, Lamblin G, Houvenaghel MC, Roussel P, Structure of sialyl-oligosaccharides isolated from bronchial mucus glycoproteins of patients (blood group O) suffering from cystic fibrosis, Eur J Biochem 168, 57-68 (1987).

    Google Scholar 

  9. van Halbeek H, Breg J, Vliegenthart JFG, Klein A, Lamblin G, Roussel P, Isolation and structural characterization of lowmolecular-mass monosialyl oligosaccharides derived from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis, Eur J Biochem 177, 443-60 (1988).

    Google Scholar 

  10. Klein A, Carnoy C, Lamblin G, Roussel P, van kuik JA, Vliegenthart JFG, Isolation and structural characterization of novel sialylated oligosaccharide-alditols from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis, Eur J Biochem 211, 491-500 (1993).

    Google Scholar 

  11. Davril M, Degroote S, Humbert P, Galabert C, Dumur V, Lafitte JJ, Lamblin G, Roussel P, The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection, Glycobiology 9, 311-321 (1999).

    Google Scholar 

  12. Scharfman A, Degroote S, Beau J, Lamblin G, Roussel P, Mazurier J, Pseudomonas aeruginosa binds to neoglycoconjugates bearing mucin carbohydrate determinants and predominantly to sialyl-Lewis x conjugates, Glycobiology 9, 757-64 (1999).

    Google Scholar 

  13. Scharfman A, Delmotte P, Beau J, Lamblin G, Mazurier J, Sialyl-Lex and Sulfo-Sialyl-Lex are receptors for P. aeruginosa, Glycoconjugate J 17, 729-34 (2000).

    Google Scholar 

  14. Wanke CA, Bistrian B, Recombinant human tumor necrosis factor and recombinant murine interleukin-1 alter the binding of Escherichia coli to intestine, mucin glycoprotein, and the HT29-C1 intestinal cell line, Nutrition 13, 959-64 (1997).

    Google Scholar 

  15. Arnold JW, Klimpel GR, Niesel DW, Tumor necrosis factor (TNF alpha) regulates intestinal mucus production during salmonellosis, Cell Immunol 151, 336-44 (1993).

    Google Scholar 

  16. Lo-Guidice JM, Merten MD, Lamblin G, Porchet N, Houvenaghel MC, Figarella C, Roussel P, Perini JM, Mucins secreted by a transformed cell line derived from human tracheal gland cells, Biochem J 326, 431-37 (1997).

  17. Bovin NV, Korchagina EYu, Zemlyanukhina TV, Byramova NE, Galanina OE, Zemlyakov AE, Ivanov AE, Zubov VP, Mochalova LV, Synthesis of polymeric neoglycoconjugates based on N-substituted polyacrylamides, Glycoconjugate J 10, 142-51 (1993).

    Google Scholar 

  18. Branka JE, Vallette G, Jarry A, Laboisse CL, Stimulation of mucin exocytosis from human epithelial cells by nitric oxide: evidence for a cGMP-dependent and a cGMP-independent pathway, Biochem J 323, 521-24 (1997).

    Google Scholar 

  19. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18, 5294-99 (1979).

    Google Scholar 

  20. Choudhury A, Singh RK, Moniaux N, El-Metwally TH, Aubert JP, Batra SK, Retinoic acid-dependent transforming growth factor-beta 2-mediated induction of MUC4 mucin expression in human pancreatic tumor cells follows retinoic acid receptor-alpha signaling pathway, J Biol Chem 275, 33929-36 (2000).

    Google Scholar 

  21. Van Seuningen I, Perrais M, Pigny P, Porchet N, Aubert JP, Sequence of the 50-flanking region and promoter activity of the human mucin gene MUC5B in different phenotypes of colon cancer cells, Biochem J 348, 675-86 (2000).

    Google Scholar 

  22. Hamosh A, Trapnell BC, Zeitlin PL, Montrose-Rafizadeh C, Rosenstein BJ, Crystal RG, Cutting GR, Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis, J Clin Invest 88, 1880-85 (1991).

    Google Scholar 

  23. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB, Sequence and expression of a candidate for the human secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype, J Biol Chem 270, 4640-49 (1995).

    Google Scholar 

  24. Yago K, Zenita K, Ginya H, Sawada M, Ohmori K, Okuma M, Kannagi R, Lowe JB, Expression of alpha-(1,3)-fucosyltransferases which synthesize sialyl Le(x) and sialyl Le(a), the carbohydrate ligands for E-and P-selectins, in human malignant cell lines, Cancer Res 53, 5559-65 (1993).

    Google Scholar 

  25. Koszdin KL, Bowen BR, The cloning and expression of a human alpha-1,3 fucosyltransferase capable of forming the E-selectin ligand, Biochem Biophys Res Com 187, 152-57 (1992).

    Google Scholar 

  26. Sasaki K, Kurata K, Funayama K, Nagata M, Watanabe E, Ohta S, Hanai N, Tatsunari N, Expression cloning of a novel alpha 1,3-fucosyltransferase that is involved in biosynthesis of the sialyl Lewis x carbohydrate determinants in leukocytes, J Biol Chem 269, 14730-37 (1994)

    Google Scholar 

  27. Bierhuizen MFA, Fukuda M, Expression cloning of a cDNA encoding UDP-GlcNAc:Gal beta 1-3-GalNAc-R (GlcNAc to GalNAc) beta 1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen, Proc Natl Acad Sci 89, 9326-33.

  28. Ropp PA, Little MR, Cheng PW, Mucin biosynthesis: purification and characterization of a mucin beta 6N-acetylglucosaminyltransferase, J Biol Chem 266, 23863-71 (1991).

    Google Scholar 

  29. Recchi MA, Harduin-Lepers A, Boilly-Marer Y, Verbert A, Delannoy P, Multiplex RT-PCR method for the analysis of the expression of human sialyltransferases: application to breast cancer cells, Glycoconjugate J 15, 19-27 (1998).

    Google Scholar 

  30. Emery N, Lo-Guidice JM, Lafitte JJ, Lhermitte M, Roussel P, The fucosylation and secretion of mucins synthesized in human bronchial cells vary according to growth conditions, Glycobiology 7, 95-101 (1997).

    Google Scholar 

  31. Lo-Guidice JM, Perini JM, Lafitte JJ, Ducourouble MP, Roussel P, Lamblin G, Characterization of a sulfotransferase from human airways responsible for the 3-O-sulfation of terminal galactose in N-acetyllactosamine-containing mucin carbohydrate chains, J Biol Chem 270, 27544-50 (1995).

    Google Scholar 

  32. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fulimoto EK, Goeke NM, Olson BJ, Klenk DC, Measurement of protein using bicinchoninic acid, Anal Biochem 150, 76-85 (1985).

    Google Scholar 

  33. Majuri ML, Pinola M, Niemelä R, Tiisala S, Natunen J, Renkonen O, Renkonen R, Alpha 2,3-sialyl and alpha 1,3-fucosyltransferase-dependent synthesis of sialyl Lewis x, an essential oligosaccharide present on L-selectin counterreceptors, in cultured endothelial cells, Eur J Immunol 24, 3205-10 (1994).

    Google Scholar 

  34. Goupille C, Marionneau S, Bureau V, Hallouin F, Meichenin M, Rocher J, Le Pendu J, Alpha1,2Fucosyltransferase increases resistance to apoptosis of rat colon carcinoma cells, Glycobiology 10, 375-23 (2000).

    Google Scholar 

  35. Fogg FJJ, Hutton DA, Jumel K, Pearson JP, Harding SE, Allen A, Characterization of pig colonic mucins, Biochem J 316, 937-42 (1996).

    Google Scholar 

  36. Carlstedt I, Lindgren H, Sheehan JK, Ulmsten U, Wingerup L, Isolation and characterization of human cervical-mucus glycoproteins, Biochem J, 211, 13-22 (1983).

    Google Scholar 

  37. Laemmli UK, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (London) 227, 680-85 (1970).

    Google Scholar 

  38. Moniaux N, Escande F, Porchet N, Aubert JP, Batra SK, Structural organization and classification of the human mucin genes, Front Biosci 6, D1192-206 (2001).

    Google Scholar 

  39. Delmotte P, Degroote S, Merten M, Bernigaud A, Van Seuningen I, Figarella C, Roussel P, Perini JM, Influence of culture conditions on the alpha 1,2-fucosyltransferase and MUC gene expression of a transformed cell line MM-39 derived from human tracheal gland cells, Biochimie 83, 749-55 (2001).

    Google Scholar 

  40. Kuninaka S, Yano T, Yokoyama H, Fukuyama Y, Terazaki Y, Uehara T, Kanematsu T, Asoh H, Ichinose Y, Direct influences of pro-inflammatory cytokines (IL-1beta, TNF-alpha, IL-6) on the proliferation and cell-surface antigen expression of cancer cell, Cytokine 12, 8-11 (2000).

    Google Scholar 

  41. Majuri ML, Niemelä R, Tiisala S, Renkonen O, Renkonen R, Expression and function of alpha 2,3-sialyl-and alpha 1,3=1,4-fucosyltransferases in colon adenocarcinoma cell lines: role in synthesis of E-selectin counter-receptors, Int J Cancer 63, 551-59 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delmotte, P., Degroote, S., Merten, M.D. et al. Influence of TNFα on the sialylation of mucins produced by a transformed cell line MM-39 derived from human tracheal gland cells. Glycoconj J 18, 487–497 (2001). https://doi.org/10.1023/A:1016038219183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016038219183

Navigation