Skip to main content
Log in

Pancreatic Lipase-Catalyzed Hydrolysis of Esters of Hydroxymethyl Phenytoin Dissolved in Various Metabolizable Vehicles, Dispersed in Micellar Systems, and in Aqueous Suspensions

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Lipase-catalyzed hydrolysis of fatty acid esters of 3-hydroxymethyl phenytoin was studied in various triglyceride and ethyl oleate emulsions, dispersed in micellar solutions, and suspended in an aqueous buffered solution. Phenytoin release from ethyl oleate emulsions of the prodrugs show apparent first-order kinetics with the pentanoate to nonanoate derivatives and sigmoidal kinetics with the long-chain fatty acid derivatives (stearate and oleate). A transition in the kinetic behavior, between the short- and the long-chain acyl prodrugs, was observed with the decanoate derivative. These observations are accounted for by a proposed kinetic model. Phenytoin release from the solid prodrugs follows zero-order kinetics and is independent of the total amounts of suspended material but directly proportional to the lipase concentration. Lipolysis of the solid suspended prodrugs was dependent on the length of the acyl side chain of the prodrug, with maxima for the pentanoate and the octanoate derivatives. The short-chain derivatives, acetate and propionate, as well as the long-chain prodrug, stearate, showed the slowest lipolysis rate when present as solid dispersions. The zero-order rate is qualitatively correlated with the melting point of the prodrugs. This result might be expected if the melting point is taken as a measure of the cohesivity or packing of the molecules at the surface of a crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. J. Stella and T. Higuchi (eds.). Prodrugs as Novel Drug Delivery Systems, Am. Chem. Soc., Washington, D.C., 1975.

    Google Scholar 

  2. E. D. Roche (ed.). Design of Biopharmaceutical Properties Through Prodrugs and Analogs, Am. Pharm. Assoc., Washington, D.C., 1977.

    Google Scholar 

  3. K. J. Widder and R. Green (eds). Drug and enzyme targeting. In Methods in Enzymology, Vol. 112, Part A, Academic Press, New York, 1985.

  4. A. A. Sinkula and S. H. Yalkowsky. J. Pharm. Sci. 64:181–210 (1975).

    Google Scholar 

  5. H. Bundgaard (ed.). Design of Prodrugs, Elsevier, New York, 1985.

    Google Scholar 

  6. K. Arnold, N. Gerber, and G. Levy. Can. J. Pharm. Sci. 5:89–92 (1970).

    Google Scholar 

  7. C. M. Martin, M. Rubin, W. E. O'Malley, V. F. Garagusi, and E. McCauley. Pharmacologist 10:167 (1968).

    Google Scholar 

  8. L. Rail. Med. J. Aust. 11:339 (1968).

    Google Scholar 

  9. T. Suzuki, Y. Saitoh, and K. Nishihara. Chem. Pharm. Bull. 18:405–411 (1970).

    Google Scholar 

  10. S. A. Varia and V. J. Stella. J. Pharm. Sci. 73:1080–1087 (1984).

    Google Scholar 

  11. Y. Yamaoka, R. Roberts, and V. J. Stella. J. Pharm. Sci. 72:400–405 (1983).

    Google Scholar 

  12. H. Bundgaard and M. Johansen. Int. J. Pharm. 5:67–77 (1980).

    Google Scholar 

  13. M. Johansen and H. Bundgaard. Arch. Pharm. Chem. Sci. Ed. 7:175–192 (1979).

    Google Scholar 

  14. DPH prodrugs were prepared from 3-hydroxymethylphenytoin and the corresponding carboxylic acid or acid chloride according to Ref. 11.

  15. E. J. Masoro. Annu. Rev. Physiol. 39:301–321 (1977).

    Google Scholar 

  16. J. F. Mead, R. B. Alfin-Slater, D. Howton, and K. G. Popjak. In Lipids, Chemistry, Biochemistry and Nutrition, Plenum Press, New York, 1986, Chap. 12, pp. 255–272.

    Google Scholar 

  17. A. B. R. Thomson and J. M. Dietschy. In L. R. Johnson (ed.), Physiology of the Gastrointestinal Tract, Raven Press, New York, 1981, Chap. 46, pp. 1147–1220.

    Google Scholar 

  18. Solubilities in micellar solutions were one to three orders of magnitude higher. (unpublished results). See also Refs. 19–22.

  19. T. R. Bates, M. Gibaldi, and J. Kanig. J. Pharm. Sci. 55:191–199 (1966).

    Google Scholar 

  20. T. R. Bates, M. Gibaldi, and J. Kanig. J. Pharm. Sci. 55:901–906 (1966).

    Google Scholar 

  21. A. T. M. Serajuddin, M. Rosoff, and A. H. Goldberg. Pharm. Res. 2:221–224 (1985).

    Google Scholar 

  22. R. Venkataramanan, H. D. Perez, T. Schwinghammer, G. J. Burckart, R. J. Ptachcinski, D. H. Van Thiel, and T. E. Starzl. Res. Comm. Chem. Pathol. Pharm. 53:137–140 (1986).

    Google Scholar 

  23. H. Brokerhoff and R. G. Jensen. In Lipolytic Enzymes, Academic Press, New York, 1974.

    Google Scholar 

  24. R. Verger. In B. Borgström and H. L. Brockman (eds.), Lipase, Elsevier, New York, 1984, Chap. 7.

    Google Scholar 

  25. R. Verger. In D. L. Purich (ed.), Methods in Enzymology, Academic Press, New York, 1980, Vol. 64, pp. 340–392.

    Google Scholar 

  26. D. Quinn, K. Shirai, and R. Jackson. Prog. Lipid Res. 22:35–78 (1982).

    Google Scholar 

  27. K. Kakemi, H. Sezaki, S. Muranishi, H. Ogata, and S. Isemura. Chem. Pharm. Bull. 20:708–714, 715–720 (1972).

    Google Scholar 

  28. T. Noguchi, K. Taniguchi, S. Muranishi, and H. Sezaki. Chem. Pharm. Bull. 25:434–440 (1977).

    Google Scholar 

  29. N. A. Armstrong and K. C. James. Int. J. Pharm. 6:185–193, 195–204 (1980).

    Google Scholar 

  30. H. Sasaki, Y. Takakura, M. Hashida, M. Kimura, and H. Sezaki. J. Pharm. Dyn. 7:120–130 (1984).

    Google Scholar 

  31. H. Nakahara, S. Okada, and K. Mochida. Chem. Pharm. Bull. 30:2673–2681 (1982).

    Google Scholar 

  32. H. Nakahara, S. Okada, K. Mochida, H. Ohmuri, and M. Masui. Chem. Pharm. Bull. 31:4213–4219 (1983).

    Google Scholar 

  33. H. Nakahara, S. Okada, H. Ohmori, and M. Masui. Chem. Pharm. Bull. 32:3803–3811 (1984).

    Google Scholar 

  34. D. Lairon, G. Nalbone, H. Lafont, N. Domingo, and J. C. Hauton. Lipids 13:211–216 (1977).

    Google Scholar 

  35. D. Lairon, G. Nalbone, H. Lafont, J. Leonardi, N. Domingo, J. C. Hauton, and R. Verger. Biochemistry 17:5263–5269 (1978).

    Google Scholar 

  36. Unpublished results from this laboratory.

  37. A. J. Glazko, W. A. Dill, A. Kazenko, L. M. Wolf, and H. E. Carnes. Antibiot. Chemother. 8:516–527 (1958).

    Google Scholar 

  38. A. Kelbaek and K. Ulrich. Arch. Pharm. Chem. 76:1089 (1969).

    Google Scholar 

  39. H. Andersgaard, P. Finholt, R. Gjermundsen, and T. Hoyland. Acta Pharm. Suec. 11:239–248 (1974).

    Google Scholar 

  40. C. T. Bauguess, F. Sadik, J. Fincher, and C. W. Hartman. J. Pharm. Sci. 64:117–120 (1975).

    Google Scholar 

  41. R. J. Kaliszan. J. Pharm. Sci. 75:187–189 (1986).

    Google Scholar 

  42. Unpublished results from this laboratory.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, F.J., Stella, V.J. Pancreatic Lipase-Catalyzed Hydrolysis of Esters of Hydroxymethyl Phenytoin Dissolved in Various Metabolizable Vehicles, Dispersed in Micellar Systems, and in Aqueous Suspensions. Pharm Res 6, 555–563 (1989). https://doi.org/10.1023/A:1015993112678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015993112678

Navigation