Skip to main content
Log in

Evidence that Oleic Acid Exists in a Separate Phase Within Stratum Corneum Lipids

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Oleic acid is known to be a penetration enhancer for polar to moderately polar molecules. A mechanism related to lipid phase separation has been previously proposed by this laboratory to explain the increases in skin transport. In the studies presented here, Fourier transform infrared spectroscopy (FT-IR) was utilized to investigate whether or not oleic acid exists in a separate phase within stratum corneum (SC) lipids. Per-deuterated oleic acid was employed allowing the conformational phase behavior of the exogenously added fatty acid and the endogenous SC lipids to be monitored independently of each other. The results indicated that oleic acid exerts a significant effect on the SC lipids, lowering the lipid transition temperature (T m) in addition to increasing the conformational freedom or flexibility of the endogenous lipid alkyl chains above their T m. At temperatures lower than T m, however, oleic acid did not significantly change the chain disorder of the SC lipids. Similar results were obtained with lipids isolated from the SC by chloroform:methanol extraction. Oleic acid, itself, was almost fully disordered at temperatures both above and below the endogenous lipid T m in the intact SC and extracted lipid samples. This finding suggested that oleic acid does exist as a liquid within the SC lipids. The coexistence of fluid oleic acid and ordered SC lipids, at physiological temperatures, is consistent with the previously proposed phase-separation transport mechanism for enhanced diffusion. In this mechanism, the enhanced transport of polar molecules across the SC can be explained by the formation of permeable interfacial defects within the SC lipid bilayers which effectively decrease either the diffusional path length or the resistance, without necessarily invoking the formation of frank pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. L. Francoeur, G. M. Golden, and R. O. Potts. Oleic acid: Its effects on stratum corneum in relation to (trans)dermal drug delivery. Pharm. Res. 7:621 (1990).

    Google Scholar 

  2. M. C. Blok, E. C. M. Van Der Neut-Ko, L. L. M. Van Deenen, and J. DeGier. The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes. Biochim. Biophys. Acta. 406:187–196 (1975).

    Google Scholar 

  3. S. H. W. Wu and H. M. McConnell. Lateral phase separations and perpendicular transport in membranes. Biochem. Biophys. Res. Comm. 55:484 (1973).

    Google Scholar 

  4. E. J. Shimshick, W. Kleeman, W. L. Hubbell, and H. M. McConnell. Lateral phase separations in membranes. J. Supramol. Struct. 285–295 (1973).

  5. D. Papahadjopoulos, K. Jacobson, S. Nir, and T. Isac. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. Biophys. Acta 311:330–348 (1973).

    Google Scholar 

  6. R. Klausner, A. Kleinfeld, R. Hoover, and M. Karnovsky. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acid and lifetime heterogeniety analysis. J. Biol. Chem. 255:1286–1295 (1980).

    Google Scholar 

  7. A. Ortiz and J. Gomez-Fernandez. A differential scanning calorimetry study of the interaction of free fatty acids with phospholipid membranes. Chem. Phys. Lipids 45:75–91 (1987).

    Google Scholar 

  8. S. Verma, D. Wallach, and F. Sakura. Raman analysis of the thermotropic behavior of lecithin-fatty acid systems and of their interaction with proteolipid apoprotein. Biochemistry 19:574–579 (1980).

    Google Scholar 

  9. S. J. Rehfeld, M. L. Williams, and P. M. Elias. Interactions of cholesterol and cholesterol sulfate with free fatty acids. Possible relevance for the pathogenesis of recessive X-linked ichthyosis. Arch. Dermatol. Res. 278:259–263 (1986).

    Google Scholar 

  10. P. M. Elias and M. L. Williams. Neutral lipid storage disease with ichthyosis. Arch. Dermatol. 121:1000–1008 (1985).

    Google Scholar 

  11. G. Grubauer, K. R. Feingold, R. M. Harris, and P. M. Elias. Lipid content and lipid type as determinants of the epidermal permeability barrier. J. Lipid Res. 30:89–96 (1989).

    Google Scholar 

  12. R. A. Dluhy, D. J. Moffatt, D. G. Cameron, R. Mendelsohn, and H. H. Mantsch. Characterization of cooperative conformational transitions by Fourier transform infrared spectroscopy: Application to phospholipid binary mixtures. Can. J. Chem. 63:1925–1932 (1985).

    Google Scholar 

  13. G. M. Golden, D. L. Guzek, A. H. Kennedy, J. E. McKie, and R. O. Potts. Stratum corneum lipid phase transitions and water barrier properties. Biochemistry 26:2382–2388 (1987).

    Google Scholar 

  14. P. W. Wertz and D. T. Downing. Covalently bound ω-hydroxyacylsphingosine in the stratum corneum. Biochim. Biophys. Acta 917:108–111 (1987).

    Google Scholar 

  15. S. H. White, D. Mirejovsky, and G. I. King. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. Biochemistry 27:3725–3732 (1988).

    Google Scholar 

  16. D. J. Moffatt and D. G. Cameron. Location of low-frequency fringe signatures in Fourier-transforms of spectra. Appl. Spectrosc. 37:566 (1983).

    Google Scholar 

  17. R. N. Jones and K. S. Seshadri. The objective evaluation of the position of infrared absorption maxima. Can. J. Chem. 40:334 (1962).

    Google Scholar 

  18. D. G. Cameron, J. K. Kauppinen, D. J. Moffatt, and H. H. Mantsch. Precision in condensed phase vibrational spectroscopy. Appl. Spectrosc. 36:245–250 (1982).

    Google Scholar 

  19. R. Mendelsohn, R. A. Dluhy, J. Taraschi, D. G. Cameron, and H. H. Mantsch. Raman and Fourier transform infrared spectroscopic studies of the interaction between glycophorin and dimysteroylphosphatidylcholine. Biochemistry 20:6699–6706 (1981).

    Google Scholar 

  20. D. G. Cameron and H. H. Mantsch. Metastability and polymorphism in the gel phase of l,2-dipalmitoyl-3-sn-phosphatidylcholine. A Fourier-transform infrared study of the subtransition. Biophys. J. 38:175–184 (1982).

    Google Scholar 

  21. C. Huang, J. R. Lapides, and I. W. Levin. Phase transition behavior of saturated, symmetric chain phospholipid bilayer dispersions determined by Raman spectroscopy: Correlation between spectral and thermodynamic parameters. J. Am. Chem. Soc. 104:5926–5930 (1982).

    Google Scholar 

  22. D. A. Wilkinson and J. F. Nagle. Dilatometry and calorimetry of saturated phosphatidylethanolamine dispersions. Biochemistry 20:187–192 (1981).

    Google Scholar 

  23. G. M. Golden, J. E. McKie, and R. O. Potts. Role of stratum corneum fluidity in transdermal drug flux. J. Pharm. Sci. 76:25–28 (1987).

    Google Scholar 

  24. A. Seelig and J. Seelig. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845 (1974).

    Google Scholar 

  25. R. G. Snyder, M. Maroncelli, H. L. Strauss, C. A. Elliger, D. G. Cameron, H. L. Casal, and H. H. Mantsch. Distribution of gauche bonds in crystalline n-C21H44 in phase II. J. Am. Chem. Soc. 105:133–134 (1983).

    Google Scholar 

  26. V. H. W. Mak, R. O. Potts, and R. H. Guy. Oleic acid concentration and effect on human stratum corneum: Non-invasive determination by attenuated total reflectance infrared spectroscopy in vivo. J. Control. Release 12:67–75 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ongpipattanakul, B., Burnette, R.R., Potts, R.O. et al. Evidence that Oleic Acid Exists in a Separate Phase Within Stratum Corneum Lipids. Pharm Res 8, 350–354 (1991). https://doi.org/10.1023/A:1015845632280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015845632280

Navigation