Skip to main content
Log in

High-Affinity [3H]THA (Tetrahydroaminoacridine) Binding Sites in Rat Brain

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Tetrahydroaminoacridine (THA), an acetylcholinesterase inhibitor that is reported to have significant effects on cognition and memory in Alzheimer’s disease patients, binds to rat brain membranes in a saturable and reversible manner. Computer analysis of the binding data revealed high- and low-affinity sites with K d values of 97.8 nM and 4.65 µM and B max values of 4.13 and 114 pmol/mg protein. Autoradiographic studies show that these binding sites are not co-localized with acetylcholinesterase activity. The binding of [3H]THA to membranes does not appear to be related to receptors for several neurotransmitters/neuromodulators, including acetylcholine and other acetylcholinesterase inhibitors. Amiridin, a closely related acetylcholinesterase inhibitor, was able to block specific [3H]THA binding (IC50 = 1.05 µM). While the function of THA mediated by these sites is unknown, they may be responsible in part for the distinct clinical effects of tetrahydroaminoacridine compared to other acetylcholinesterase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. J. Whitehouse, D. L. Price, R. G. Struble, A. W. Clark, J. T. Coyle, and M. R. DeLong. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239 (1982).

    Google Scholar 

  2. D. A. Drachman and J. Leavitt. Human memory and the cholinergic system, Arch. Neurol. 30:113–121 (1974).

    Google Scholar 

  3. L. J. Thal, W. Rosen, N. S. Sharpless, and H. Crystal. Choline chloride fails to improve cognition of Alzheimer's disease. Neurobiol. Aging 2:205–208 (1983).

    Google Scholar 

  4. W. D. Boyd, J. Graham-White, G. Blackwood, I. Glen, and J. McQueen. Clinical effects of choline in Alzheimer senile dementia. Lancet 2:711 (1977).

    Google Scholar 

  5. S. D. Brinkman, N. Pomara, P. J. Goodnick, N. Barnett, and E. F. Domino. A dose-ranging study of lecithin in the treatment of primary degenerative dementia (Alzheimer disease). J. Clin. Psychopharmacol. 2:281–285 (1982).

    Google Scholar 

  6. J. E. Christie, A. Sherring, J. Ferguson, and A. I. M. Glen. Physostigmine and arecoline: Effects of intravenous infusion in Alzheimer presenile dementia. Br. J. Psychiat. 138:46–50 (1981).

    Google Scholar 

  7. K. L. Davis and R. C. Mohs. Enhancement of memory process in Alzheimer's disease with multiple-dose intravenous physostigmine. Am J. Psychiat. 139:1421–1424 (1982).

    Google Scholar 

  8. K. L. Davis, R. C. Mohs, J. R. Tinklenberg, A. Pfeffebaum, L. E. Hollister, and B. S. Kopell. Physostigmine: Improvements of long-term memory processes in normal humans. Science 201:272–274 (1978).

    Google Scholar 

  9. W. K. Summers, L. V. Majovski, G. M. Marsh, K. Tachiki, and A. Kling. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N. Engl. J. Med. 315:1241–1245 (1986).

    Google Scholar 

  10. P. N. Kaul. Enzyme inhibiting activity of tetrahydroaminoacridine and its structural fragments. J. Pharm. Pharmacol. 14:243–248 (1962).

    Google Scholar 

  11. B. Drukarch, K. S. Kits, E. G. Van der Meer, J. C. Lodder, and J. C. Stoof. 9-Amino-l,2,3,4-tetrahydroaminoacridine (THA), an alleged drug for the treatment of alzheimer's disease inhibits acetylcholinesterase activity and slow outward K+ current. Eur. J. Pharm. 141:153–157 (1987).

    Google Scholar 

  12. D. R. Stevens and C. W. Cotman. Excitatory action of tetrahydro-9-amino acridine (THA) on hippocampal pyramidal neurons. Neurosci. Lett. 79:301–305 (1987).

    Google Scholar 

  13. C. L. Schauf and A. Sattin. Tetrahydroaminoacridine blocks potassium channels and inhibits sodium inactivation in Myxicola. J. Pharm. Exp. Ther. 243:609–613 (1987).

    Google Scholar 

  14. B. Drukarch, J. E. Leysen, and J. C. Stoof. Further analysis of the pharmacological profile of 9-amino-1,2,3,4-tetrohydroamino acridine (THA). Life Sci. 42:1011–101 (1988).

    Google Scholar 

  15. E. G. Gray and V. P. Whittaker. Isolation of nerve endings from brain: An electron microscope study of cell fragments derived by homogenization. J. Anat. 96:79–87 (1962).

    Google Scholar 

  16. G. K. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95 (1961).

    Google Scholar 

  17. G. B. Koelle and J. S. Fridenwald. A histochemical method for localizing cholinesterase activity. Proc. Soc. Exp. Biol. Med. 70:617–622 (1949).

    Google Scholar 

  18. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85 (1985).

    Google Scholar 

  19. H. Feldman, D. Rodbard, and D. Levine. Mathematical theory of cross-reaction radioimmunoassay and ligand-binding systems at equilibrium. Anal. Biochem. 45:530–556 (1972).

    Google Scholar 

  20. W. S. Young and M. J. Kuhar. A new method for receptor autoradiography: [3H]opiod receptors in rat brain. Brain Res. 179:255–270 (1979).

    Google Scholar 

  21. J. A. Nielsen, E. E. Mena, I. H. Williams, M. R. Nocerini, and D. Liston. Correlation of brain levels of THA with neurochemical and behavioral changes. Eur. J. Pharm. 173:53–64 (1989).

    Google Scholar 

  22. W. McNally, M. Roth, R. Young, H. Bockbrader, and T. Chang. Quantative whole-body autoradiographic determination of tacrine tissue distribution in rats following intravenous or oral dose. Pharm. Res. 6:924–930 (1989).

    Google Scholar 

  23. C. Braestrup and R. F. Squires. Specific benzodiazepine receptors in rat brain characterized by high-affinity [3H]diazepam binding. Proc. Natl. Acad. Sci. USA 74:3805–3809 (1977).

    Google Scholar 

  24. P. J. Roberts. Glutamate receptors in the rat central nervous system. Nature 252:339–401 (1974).

    Google Scholar 

  25. G. L. Craviso and J. M. Musacchio. High-affinity dectromethorphan binding sites in guinea pig brain. I. Initial characterization. Mol. Pharmacol. 23:619–628 (1983).

    Google Scholar 

  26. S. R. Zukin and R. S. Zukin. Specific [3H]phencyclidine binding in rat central nervous system. Proc. Natl. Acad. Sci. USA 76:5372–5376 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mena, E.E., Desai, M.C. High-Affinity [3H]THA (Tetrahydroaminoacridine) Binding Sites in Rat Brain. Pharm Res 8, 200–203 (1991). https://doi.org/10.1023/A:1015840003630

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015840003630

Navigation