Skip to main content
Log in

Time-Resolved Fluorescence Spectroscopy Study on the Photophysical Behavior of Quantum Dots

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Room-temperature time-resolved luminescence measurements on single CdSe/ZnS quantum dots (QDs) are presented. Fluorescence emission spectra were recorded over periods of up to 30 minutes with a time resolution as small as 6 ms. For QDs in ambient air, a clear 30–40 nm blue shift in the emission wavelength is observed, before the luminescence stops after about 2–3 minutes because of photobleaching. In a nitrogen atmosphere, the blue shift is absent while photobleaching occurs after much longer times (i.e., 10–15 minutes). These observations are explained by photoinduced oxidation. The CdSe surface is oxidized during illumination in the presence of oxygen. This effectively results in shrinkage of the CdSe core diameter by almost 1 nm and consequently in a blue shift. The faster fading of the luminescence in air suggests that photoinduced oxidation results in the formation of non-radiative recombination centers at the CdSe/CdSeOx interface. In a nitrogen atmosphere, photoinduced oxidation is prevented by the absence of oxygen. Additionally, a higher initial light output for CdSe/ZnS QDs in air is observed. This can be explained by a fast reduction of the lifetime of the long-lived defect states of CdSe QDs by oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. P. Alivisatos (1996) J. Phys. Chem. 100, 13226–13239.

    Google Scholar 

  2. S.V. Gaponenko (1998) Optical Properties of Semiconductor Nano-crystals, Cambridge University Press, Cambridge, U. K.

    Google Scholar 

  3. Al. L. Efros and M. Rosen (2000) Annu. Rev. Mater. Sci. 30, 475–521.

    Google Scholar 

  4. A. D. Yoffe (2001) Adv. Phys. 50, 1–208.

    Google Scholar 

  5. B. O. Dabbouosi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi (1997) J. Phys. Chem. B 101, 9463–9475.

    Google Scholar 

  6. S. Empedocles and M. G. Bawendi (1996) Acc. Chem. Res. 32, 389–396.

    Google Scholar 

  7. F. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin, and M. G. Bawendi (2000) J. Am. Chem. Soc. 122, 2532–2540.

    Google Scholar 

  8. S. A. Blanton, A. Dehestani, P. C. Lin, and P. Guyot-Sionnest (1994) Chem. Phys. Lett. 229, 317–322.

    Google Scholar 

  9. M. Nirmal, B. O. Dabbousi, M. Bawendi, J. J. Macklin, J. K. Trautmann, T. D. Harris, and L. E. Brus (1996) Nature 383, 802–804.

    Google Scholar 

  10. M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos (1998) Science 281, 2013–2016.

    Google Scholar 

  11. W. C. W. Chan and S. Nie (1998) Science 281, 2016–2018.

    Google Scholar 

  12. M. Dahan, T. Laurence, F. Pinaud, D. S. Chemla, A. P. Alivisatos, M. Sauer, and S. Weiss (2001) Opt. Lett. 26, 825–827.

    Google Scholar 

  13. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos (2001) J. Phys. Chem B 105, 8861–8871.

    Google Scholar 

  14. Al. L. Efros and M. Rosen (1997) Phys. Rev. Lett. 78, 1110–1113.

    Google Scholar 

  15. U. Banin, M. Bruchez, A. P. Alivisatos, T. Ha, S. Weiss, and D. S. Chemla (1999) J. Chem. Phys. 110, 1195–1201.

    Google Scholar 

  16. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt (2000) J. Chem. Phys. 112, 3117–3120.

    Google Scholar 

  17. R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi (2000) Phys. Rev. Lett. 85, 3301–3304.

    Google Scholar 

  18. S. A Empedocles and M. G. Bawendi (1997) Science 278, 2114–2117.

    Google Scholar 

  19. S. R. Cordero, P. J. Carson, R. A. Estabrook, G. F. Strouse, and S. K. Buratto (2000) J. Phys. Chem B 104, 12137–12142.

    Google Scholar 

  20. W. G. J. H. M. Van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. Van Lingen, C. De Mello Donegá, and A. Meijerink (2001) J. Phys. Chem. B 105, 8281–8284.

    Google Scholar 

  21. M. A. Hines and P. Guyot-Sionnest (1996) J. Phys. Chem. 100, 468–471.

    Google Scholar 

  22. W. G. J. H. M. Van Sark, P. L. T. M. Frederix, A. A. Bol, D. J. Van den Heuvel, H. C. Gerritsen, and A. Meijerink (2002) Phys. Chem. Chem. Phys., submitted for publication.

  23. A. A. Bol (2001) Ph.D. Thesis, Utrecht University.

  24. P. L. T. M. Frederix, M. A. H. Asselbergs, W. G. J. H. M. Van Sark, D. J. Van den Heuvel, W. Hamelink, E. L. De Beer, and H. C. Gerritsen (2001) Appl. Spec. 55, 1005–1012.

    Google Scholar 

  25. P. L. T. M. Frederix (2001) Ph.D. Thesis, Utrecht University.

  26. W. M. Yen and S. Shionoya (1999) Phosphor. Handbook, CRC Press, Boca Raton, FL, p. 233.

    Google Scholar 

  27. X.-Q. Li and Y. Arakawa (1999) Phys. Rev. B 60, 1915–1920.

    Google Scholar 

  28. S. A. Blanton, M. A. Hines, and P. Guyot-Sionnest (1996) Appl. Phys. Lett. 69, 3905–3907.

    Google Scholar 

  29. S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi (1999) Adv. Mater. 11, 1243–1256.

    Google Scholar 

  30. J. E. Bowen Katari, V. L. Colvin, and A. P. Alivisatos (1994) J. Phys. Chem. 98, 4109–4117.

    Google Scholar 

  31. A. Henglein (1988) Top. Curr. Chem. 143, 113–180.

    Google Scholar 

  32. D. E. Dunstan, A. Hagfeldt, M. Almgren, H. O. G. Siegbahn, and E. Mukhtar (1990) J. Phys. Chem. 94, 6797–6804.

    Google Scholar 

  33. L. Spanhel, M. Haase, H. Weller, and A. Henglein (1987) J. Am. Chem. Soc. 109, 5649–5655.

    Google Scholar 

  34. W. G. J. H. M. Van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, M. A. H. Asselbergs, I. Senf, and H. C. Gerritsen (2000) Single Mol. 1, 291–298.

    Google Scholar 

  35. I. Rosenthal (1978) Opt. Comm. 24, 164–166.

    Google Scholar 

  36. A. L. Huston and C. T. Reimann (1991) Chem. Phys. 149, 401–407.

    Google Scholar 

  37. T. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler (1996) Proc. Natl. Acad. Sci. USA 93, 2926–2929.

    Google Scholar 

  38. N. Chestnoy, T. D. Harris, R. Hull, and L. E. Brus (1986) J. Phys. Chem. 90, 3393–3399.

    Google Scholar 

  39. L. Song, C. A. G. O. Varma, J. W. Verhoeven, and H. J. Tanke (1996) Biophys. J. 70, 2959–2968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. J. H. M. van Sark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Sark, W.G.J.H.M., Frederix, P.L.T.M., van den Heuvel, D.J. et al. Time-Resolved Fluorescence Spectroscopy Study on the Photophysical Behavior of Quantum Dots. Journal of Fluorescence 12, 69–76 (2002). https://doi.org/10.1023/A:1015315304336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015315304336

Navigation