Skip to main content
Log in

Exciton dynamics in the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus: experimental and theoretical studies of femtosecond pump-probe spectra

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Femtosecond absorption difference spectra were measured for chlorosomes isolated from the green bacterium Chloroflexus aurantiacus at room temperature. Using the relative difference absorption of the oligomeric BChl c and monomeric BChl a bands, the size of a unit BChl c aggregate as well as the exciton coherence size were estimated for the chlorosomal BChl c antenna under study. A quantitative fit of the data was obtained within the framework of the exciton model proposed before [Fetisova et al. (1996) Biophys J 71: 995–1010]. The size of the antenna unit was found to be 24 exciton-coupled BChl c molecules. The anomalously high bleaching value of the oligomeric B740 band with respect to the monomeric B795 band provided the direct evidence for a high degree of exciton delocalization in the chlorosomal B740 BChl c antenna. The effective delocalization size of individual exciton wavefunctions (the thermally averaged inverse participation ratio) in the chlorosomal BChl c antenna is 9.5, whereas the steady-state wavepacket corresponds to the coherence size (the inverse participation ratio of the density matrix) of 7.4 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alden RG, Johnson E, Nagarajan V, Parson WW, Law CJ and Cogdell RJ (1997) Calculation of spectroscopic properties of the LH 2 bacteriochlorophyll-protein antenna complex of Rhodopseudomonas acidophila. J Phys Chem B 101: 4667–4680

    Article  Google Scholar 

  • Becker M, Nagarajan M and Parson W (1991) Properties of the exsited-singlet states of bacteriochlorophyll a and bacteriopheophytin a in polar solvents. J Am Chem Soc 113: 6840–6848

    Article  Google Scholar 

  • Blankenship RE, Olson JM and Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: RE Blankenship, MT Madigan and CE Bauer (eds) Anoxygenic Photosynthetic Bacteria, pp 399–435. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33: 476–504

    PubMed  Google Scholar 

  • Dracheva TV, Taisova AS and Fetisova ZG (1998) Circular dichroism spectroscopy as a test for the chlorosome antenna structure. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol 1 pp 129–132. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Fetisova ZG and Mauring K (1992) Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning. FEBS Lett 307: 371–374

    Article  PubMed  Google Scholar 

  • Fetisova ZG and Mauring K (1993) Spectral hole burning study of intact cells of green bacterium Chlorobium limicola. FEBS Lett 323: 159–162

    Article  PubMed  Google Scholar 

  • Fetisova ZG, Kharchenko SG and Abdourakhmanov IA (1986) Strong orientational ordering of the near-infrared transition moment vectors of light-harvesting antenna bacterioviridin in chromatophores of the green photosynthetic bacterium Chlorobium limicola. FEBS Lett 199: 234–236

    Article  Google Scholar 

  • Fetisova ZG, Freiberg AM and Timpmann KE (1988) Long-range molecular order as an efficient strategy for light harvesting in photosynthesis. Nature (London) 334: 633–634

    Article  Google Scholar 

  • Fetisova ZG, Mauring K and Taisova AS (1994) Strongly exciton coupled BChl e chromophore system in chlorosomal antenna of intact cells of the green bacterium Chlorobium phaeovibrioides: spectral hole burning study. Photosynth Res 41: 205–210

    Article  Google Scholar 

  • Fetisova ZG, Freiberg AM, Mauring K, Novoderezhkin VI, Taisova AS and Timpmann KE (1996) Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophys J 71: 995–1010.

    PubMed  Google Scholar 

  • Fidder H, Knoester J and Wiersma DA (1991) Optical properties of disordered molecular aggregates: A numerical study. J Chem Phys 95: 7880–7890

    Article  Google Scholar 

  • Frese R, Oberheide U, van Stokkum IHM, van Grondelle R, Foidl M, Oelze J and van Amerongen (1997) The organization of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus and the structural role of carotenoids and protein: an absorption, linear dichroism, circular dichroism and Stark spectroscopy study. Photosynth Res 54: 115–126

    Article  Google Scholar 

  • Gerola PD and Olson JM (1986) A new bacteriochlorophyll a-protein complex assosiated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848: 69–76

    PubMed  Google Scholar 

  • Golecki JR and Oelze J (1987) Quantitative relashionship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus. Arch Microbiol 148: 236–241

    Article  Google Scholar 

  • Holzwarth AR and Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study. Photosynth Res 41: 225–233

    Article  Google Scholar 

  • Kennis JTM, Streltsov AM, Aartsma TJ, Nozawa T and Amesz J (1996) Energy transfer and exciton coupling in isolated B800–850 complexes of the photosynthetic purple sulfur bacterium Chromatium tepidum. The effect of structural symmetry on bacteriochlorophyll excited states. J Phys Chem 100: 2438–2442

    Article  Google Scholar 

  • Ketelaars M, van Oijen AM, Matsushita M, Koeler J, Schmidt J and Aartsma TJ (2001) Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila 1. Experiments and Monte Carlo simulations. Biophys J 80: 1591–1603.

    PubMed  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  PubMed  Google Scholar 

  • Kuhn O and Mukamel S (1997) Probing the two-exciton manifold of light-harvesting antenna complexes using femtosecond fourwave mixing. J Phys Chem B101: 809–816

    Google Scholar 

  • Kuhn O and Sundstrom V (1997) Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach. J Chem Phys 107: 4154–4164

    Article  Google Scholar 

  • Lin S, van Amerongen H and Struve WS (1991) Ultrafast pumpprobe spectroscopy of bacteriochlorophyll c antennae in BChl acontaining chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1060: 13–24

    Google Scholar 

  • Mauring K, Novoderezhkin VI, Taisova AS and Fetisova ZG (1999) Exciton levels structure of antenna bacteriochlorophyll c aggregates in the green bacterium Chloroflexus aurantiacus as probed by 1.8–293 K fluorescence spectroscopy. FEBS Lett 456: 239–242

    Article  PubMed  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Google Scholar 

  • Meier T, Chernyak V and Mukamel S (1997a) Multiple exciton coherence sizes in photosynthetic antenna complexes viewed by pump-probe spectroscopy. J Phys Chem B 101: 7332–7342

    Article  Google Scholar 

  • Meier T, Zhao Y, Chernyak V and Mukamel S (1997b) Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes. J Chem Phys 107: 3876–3893

    Article  Google Scholar 

  • Mimuro M, Hirota M, Nishimura Y, Moriyama T, Yamazaki I, Shimada K and Matsuura K (1994) Molecular organization of bacteriochlorophyll in chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus: studies of fluorescence depolarization accompanied by energy transfer process. Photosynth Res 41: 181–191

    Article  Google Scholar 

  • Mizoguchi T, Sakamoto S, Koyama Y, Ogura K and Inagaki F (1998) The structure of the aggregate form of bacteriochlorophyll c showing the Qy absorption above 740 nm as determined by the ring-current effects on 1H and 13C nuclei and by 1H-1H intermolecular NOE correlations. Photochem Photobiol 67: 239–248

    Article  Google Scholar 

  • Monshouwer R (1998) The nature and dynamics of excitations in photosynthetic light-harvesting. PhD Thesis. Vrije Universiteit Amsterdam

  • Mukamel S (1995) Principles of Nonlinear Optical Spectroscopy. Oxford University Press, New York/Oxford

    Google Scholar 

  • Nagarajan V, Johnson ET, Williams JC and Parson WW (1999) Femtosecond pump-probe spectroscopy of the B850 antenna complex of Rhodobacter sphaeroides at room temperatrure. J Phys Chem B 103: 2297–2309

    Article  Google Scholar 

  • Novoderezhkin VI and Fetisova ZG (1996) Structure of bacteriochlorophyll aggregates in chlorosomes of green bacteria: A spectral hole burning study. Biochem Mol Biol Internat 40: 243–252

    Google Scholar 

  • Novoderezhkin VI and Fetisova ZG (1999) Exciton delocalization in the B808–866 antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy. Biophys J 77: 424–430

    PubMed  Google Scholar 

  • Novoderezhkin VI, Taisova AS, Fetisova ZG, Blankenship RE, Savikhin S, Buck DR and Struve WS (1998) Energy transfers in the B808–866 antenna from the green bacterium Chloroflexus aurantiacus. Biophys J 74: 2069–2075

    PubMed  Google Scholar 

  • Novoderezhkin V, Monshouwer R and van Grondelle R (1999a) Exciton (de)localization in the LH 2 antenna of Rhodobacter sphaeroides as revealed by relative difference absorption measurements of the LH2 antenna and the B820 subunit. J Phys Chem B 103: 10540–10548

    Article  Google Scholar 

  • Novoderezhkin V, Monshouwer R and van Grondelle R (1999b) Disordered exciton model for the core light-harvesting antenna of Rhodopseudomonas viridis. Biophys J 77: 666–681

    PubMed  Google Scholar 

  • Novoderezhkin VI, Taisova AS and Fetisova ZG (2001) Unit building block of the oligomeric chlorosomal antenna of the green photosynthetic bacterium Chloroflexus aurantiacus: modeling of nonlinear optical spectra. Chem Phys Lett 335: 234–240

    Article  Google Scholar 

  • Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594: 33–51

    PubMed  Google Scholar 

  • Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67(1): 61–75

    Article  Google Scholar 

  • Prokhorenko VI, Steensgaard DB and Holzwarth AR (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79: 2105–2120

    PubMed  Google Scholar 

  • Pierson BK and Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs Chloroflexus aurantiacus. Arch Microbiol 100: 283–305

    Article  Google Scholar 

  • Pullerits T, Chachisvilis M and Sundstrom V (1996) Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J Phys Chem 100: 10787–10792

    Article  Google Scholar 

  • Savikhin S, Zhu Y, Lin S, Blankenship RE and Struve WS (1994) Femtosecond spectroscopy of chlorosome antennas from the green photosynthetic bacterium Chloroflexus aurantiacus. J Phys Chem 98: 10322–10334

    Article  Google Scholar 

  • Savikhin S, Buck DR, Struve WS, Blankenship RE, Taisova AS, Novoderezhkin VI and Fetisova ZG (1998) Exciton delocalization in the bacteriochlorophyll c antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy FEBS Lett 430: 323–326

    Article  PubMed  Google Scholar 

  • Sprague SG, Staehelin LA, DiBartolomeis MJ and Fuller RC (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1021–1031

    PubMed  Google Scholar 

  • Staehelin LA, Golecki GR, Fuller RC and Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fructured cells of Chloroflexus aurantiacus. Arch Microbiol 119: 269–277

    Article  Google Scholar 

  • Timpmann KE, Taisova AS, Novoderezhkin VI and Fetisova ZG (1997) Functioning of oligomeric-type light-harvesting antenna. Biochem Mol Biol Internat 42: 21–27

    Google Scholar 

  • Van Amerongen H, Vasmel H and van Grondelle R (1988) Linear dichroism of chlorosomes from Chloroflexus aurantiacus in compressed gels and electric fields. Biophys J 54: 65–76

    Google Scholar 

  • Van Burgel M, Wiersma DA and Duppen K (1995) The dynamics of one-dimensional excitons in liquids. J Chem Phys 102: 20–33

    Article  Google Scholar 

  • Van Dorssen RJ, Vasmel H and Amesz J (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. II. The chlorosome. Photosynth Res 9: 33–45

    Article  Google Scholar 

  • Van Rossum BJ, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR and de Groot HJM (2001) A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry 40: 1587–1595

    Article  PubMed  Google Scholar 

  • Yakovlev AG, Shkuropatov AY and Shuvalov VA (2000) Nuclear wavepacket motion producing a reversible charge separation in bacterial reaction centers. FEBS Lett 466: 209–212

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoya Fetisova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlev, A., Novoderezhkin, V., Taisova, A. et al. Exciton dynamics in the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus: experimental and theoretical studies of femtosecond pump-probe spectra. Photosynthesis Research 71, 19–32 (2002). https://doi.org/10.1023/A:1014995328869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014995328869

Navigation