Skip to main content
Log in

A general maximum likelihood analysis of measurement error in generalized linear models

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This paper describes an EM algorithm for maximum likelihood estimation in generalized linear models (GLMs) with continuous measurement error in the explanatory variables. The algorithm is an adaptation of that for nonparametric maximum likelihood (NPML) estimation in overdispersed GLMs described in Aitkin (Statistics and Computing 6: 251–262, 1996). The measurement error distribution can be of any specified form, though the implementation described assumes normal measurement error. Neither the reliability nor the distribution of the true score of the variables with measurement error has to be known, nor are instrumental variables or replication required.

Standard errors can be obtained by omitting individual variables from the model, as in Aitkin (1996).

Several examples are given, of normal and Bernoulli response variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitkin M. 1996. A general maximum likelihood analysis of overdis-persion in generalized linear models. Statistics and Computing 6: 251-262.

    Google Scholar 

  • Aitkin M., Anderson D.A., Francis B.J., and Hinde J.P. 1989. Statistical Modelling in GLIM. University Press, Oxford.

    Google Scholar 

  • Aitkin M. and Francis B.J. 1995. Fitting overdispersed generalized linear models by nonparametric maximum likelihood. The GLIM Newsletter 25: 37-45.

    Google Scholar 

  • Carroll R.J., Ruppert D., and Stefanski L.A. 1995. Measurement Error in Nonlinear Models. Chapman and Hall, London.

    Google Scholar 

  • Carroll R.J. and Stefanski L.A. 1990. Approximate quasilikelihood estimation in models with surrogate predictors. J. Amer. Statist. Assoc. 85: 652-663.

    Google Scholar 

  • Davies R.B. 1987. Mass point methods for dealing with nuisance parameters in longitudinal studies. In: R. Crouchley, (Ed.), Longitudinal Data Analysis. Avebury, Aldershot, Hants.

  • Dempster A.P., Laird N.M., and Rubin D.A. 1977. Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. B 39: 1-38.

    Google Scholar 

  • Fuller W. 1987. Measurement Error Models. John Wiley, New York.

    Google Scholar 

  • Gleser L.J. 1990. Improvements of the naive approach to estimation in nonlinear errors-in-variables regression models. In: P.J. Brown and W.A. Fuller (Eds.), Statistical Anaysis of Measurement Error Models and Application, American Mathematics Society, Providence.

    Google Scholar 

  • Hanfelt J.J. and Liang K.-Y. 1997. Approximate likelihoods for generalized errors-in-variables models. J. Roy. Statist. Soc. B 59: 627-637.

    Google Scholar 

  • Heckman J.J and Singer B. 1984. A method for minimizing the impact of distributional assumptions in econometric models of duration. Econometrica 52: 271-320.

    Google Scholar 

  • Hinde J.P. 1982. Compound Poisson regression models. In: R. Gilchrist, (Ed.), GLIM 82, Springer-Verlag, New York.

    Google Scholar 

  • Hinde J.P. and Wood A.T.A. 1987. Binomial variance component models with a non-parametric assumption concerning random effects. In: R. Crouchley (Ed.), Longitudinal Data Analysis. Avebury, Aldershot, Hants.

  • Kiefer J. and Wolfowitz J. 1956. Consistency of the maximumlikelihood estimator in the presence of infinitely many nuisance parameters. Ann. Math. Statist. 27: 887-906.

    Google Scholar 

  • Laird N.M. 1978. Nonparametric maximum likelihood estimation of a mixing distribution. J. Amer. Statist. Assoc. 73: 805-811.

    Google Scholar 

  • Lesperance M.L. and Kalbfleisch J.D. 1992. An algorithm for computing the nonparametric MLE of a mixing distribution. J. Amer. Statist. Assoc. 87: 120-126.

    Google Scholar 

  • Lindsay B.G. 1983. The geometry of mixture likelihoods, part I: A general theory. Ann. Statist. 11: 86-94.

    Google Scholar 

  • McLachlan G.J. 1987. On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Applied Statistics 36: 318-324.

    Google Scholar 

  • Magder L.S. and Zeger S.L. 1996. A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians. J. Amer. Statist. Assoc. 91: 1141-1151.

    Google Scholar 

  • Murphy S.A. and Van Der Vaart A.W. 2000. On profile likelihoods (with discussion). J. Amer. Statist. Assoc. 95: 449-485.

    Google Scholar 

  • Nakamura T. 1990. Corrected score functions for errors-in-variables models: Methodology and application to generalized linear mod-els. Biometrika 77: 127-137.

    Google Scholar 

  • Reiersøl O. 1950. Identifiability of a linear relation between variables which are subject to error. Econometrica 18: 375-389.

    Google Scholar 

  • Roeder K., Carroll R.J., and Lindsay B.G. 1996. A semiparametric mixture approach to case-control studies with errors in covariables. J. Amer. Statist. Assoc. 91: 722-732.

    Google Scholar 

  • Schafer D.W. 1987. Covariate measurement error in generalized linear models. Biometrika 74: 385-391.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aitkin, M., Rocci, R. A general maximum likelihood analysis of measurement error in generalized linear models. Statistics and Computing 12, 163–174 (2002). https://doi.org/10.1023/A:1014838703623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014838703623

Navigation