Skip to main content
Log in

Food-web structure in two shallow salt lakes in Los Monegros (NE Spain): energetic vs dynamic constraints

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Energetic and dynamic constraints have been proposed as rival factors in determining food-web structure. Food-web length might be controlled either by the amount of energy entering the web (energetic constraints) or by time span between consecutive disturbances relative to time needed to build up a population (dynamic constraints). Dynamic constraints are identified with processes functioning at a regional scale such as climate, lithology and hydrogeology. Energetic constraints are related with processes operating both at a regional and a local scale. We studied the contribution of energetic constraints to food-web organization in two temporary saline lakes with similar dynamic constraints. Lakes were sampled fortnightly during two hydroperiods (1994/1995 and 1995/1996). Differences in energetic constraints between lakes result in divergent assemblages of primary producers. Consumer assemblages in both lakes, however, are similar in species composition although differ in total biomass and species abundances. Food-webs are short with a high proportion of omnivores. To simulate an increase in the energy input entering to these systems, an addition of nutrients (to a final concentration of 100 μgċl−1 P-PO4 3-) was done in mesocosms placed within the lakes in order to obtain an increase in the phytoplankton biomass. No significant response to nutrient enrichment was found in food-web structure (composition, density or biomass).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcorlo, P., 1999. Redes tróficas en lagunas salinas temporales de la comarca de Los Monegros (Zaragoza). PhD Thesis. Universidad Autónoma de Madrid: 300 pp+Appendix.

  • Alcorlo, P., P. Díaz, J. Lacalle, A. Baltanás, M. Florín, M. C. Guerrero & C. Montes, 1997. Sediment features, primary producers and food web structure in two shallow temporary lakes (Monegros, Spain). Wat. Air Soil Poll. 99: 681–688.

    Google Scholar 

  • Aminot, A. & M. Chaussepied, 1993. Manuel des chimiques en milieu marin. CNES, Paris.

    Google Scholar 

  • Andersen, J.M., 1976. An ignition method for determination of total phosphorus in lake sediments. Wat. Res. 10: 329–331.

    Google Scholar 

  • A.P.H.A., 1991. Métodos normalizados para el análisis de aguas potables y residuales. Díaz de Santos, S.A., Madrid.

    Google Scholar 

  • Briand, F., 1983. Environmental control of food web structure. Ecology 64: 253–263. Table 6. Total biomass (mg C · m-2) allocated to each taxa Lake Date Anostracans Nematods Ostracods Rotifers Algae Piñol 1/17/96 157.34 0.48 26.52 0.01 0.98 2/2/96 282.18 1.25 139.77 0.13 2.69 2/17/96 130.73 2.19 45.66 0.87 3.86 3/1/96 103.35 2.67 41.24 1.01 2.40 3/13/96 71.55 4.24 100.55 0.64 1.62 Muerte 1/17/96 0.87 1.58 0.90 0.027 2.63 2/2/96 0.01 0.09 0.99 0.04 18.26 2/17/96 0.008 0.23 33.19 0.24 41.89 3/1/96 - 0.14 8.11 0.14 6.69 3/13/96 - 0.18 5.76 0.02 3.71 Table 7. Results of analysis of variance of biomass in relation to phosphorus enrichment Consumers Phytoplankton All Treatment Date Treatment Treatment Date Treatment Treatment Date Treatment × Date × Date × Date La Muerte df 1 4 4 1 4 4 1 4 4 F-ratio 0.4691 2.4836 0.8209 8.6637 21.9529 1.219 3.1521 2.3764 1.0968 p 0.5012 0.0766 0.5271 0.008 <0.0001 0.3341 0.091 0.0864 0.3852 Piñol df 1 4 4 1 4 4 1 4 4 F-ratio 2.3538 0.7338 0.1627 0.0114 5.9936 1.4479 2.3793 0.7095 0.1592 p 0.1406 0.5797 0.9548 0.9163 0.003 0.2591 0.1386 0.5949 0.9565

    Google Scholar 

  • Cohen, J. E., 1989. Food webs and community structure. In Levin, S. A. (eds), Perspectives in Ecological Theory. Princeton University Press, Princeton, N.J.: 181–202.

    Google Scholar 

  • Cohen, J. E. & C. M. Newman, 1985. A stochastic theory of community food webs I. models and aggregated data. Proc. r. Soc. Lond. Ser.B. 224: 421–448.

    Google Scholar 

  • Comín, F., R. Julià & P. Comín, 1991. Fluctuations, the key aspect for the ecological interpretation of saline lake ecosystems. Oecologia Aquat. 10: 127–135.

    Google Scholar 

  • Comín, F., X. Rodó & P. Comín, 1992. Lake Gallocanta (Aragón, NE.Spain), a paradigm of fluctuations at different scales of time. Limnetica 8: 79–86.

    Google Scholar 

  • Díaz Palma, P., 1998. Producción primaria y su relación con las fluctuaciones asociadas al ciclo hidrológico en lagunas salinas de la Depresión del Ebro (NE, España). PhD Thesis., Universidad Autónoma de Madrid: 221 pp.

  • Downing, J. A. & F. H., Rigler, 1984. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. 2nd edn. Blackwell Scientific Publications, Great Britain: 501 pp.

    Google Scholar 

  • Feller, R. J. & R. M. Warwick, 1988. Energetics. In Higgins, R. P. & H. Thiel (eds), Introduction to the Study of Meiofauna. Smithsonian Institution, Washington, D.C.: 181–196.

    Google Scholar 

  • Florín, M. & C. Montes, 1998. Fluctuations of hydrochemical equilibrium in temporary saline lagunas with different primary producer communities. Verh. int. Ver. Limnol. 26: 1387–1391.

    Google Scholar 

  • Fretwell, S. D., 1977. The regulation of plant communities by the food chains exploiting them. Perspectives in Biology and Medicine 20: 169–185.

    Google Scholar 

  • Fretwell, S. D., 1987. Food chain dynamics: the central theory of ecology? Oikos 50: 291–301.

    Google Scholar 

  • Guerrero, M. C. & R. De Wit, 1992. Microbial mats in the inland saline lakes of Spain. Limnetica 8: 197–204.

    Google Scholar 

  • Hairston, N. G. Jr. & N. G. Sr. Hairston, 1993. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. Am. Nat. 142: 379–411.

    Google Scholar 

  • Hammer, U. T., 1986. Saline lake ecosystems of the world. Dr W. Junk Publishers, Dordrecht, The Netherlands: 615 pp.

    Google Scholar 

  • Havens, K. E., 1994. Experimental perturbation of a freshwater plankton community: a test of hypotheses regarding the effects of stress. Oikos 69: 147–153.

    Google Scholar 

  • Hutchinson, G. E., 1959. Homage to Santa Rosalia orWhy are there so many kinds of animals? Am. Nat. 93: 145–158.

    Google Scholar 

  • Instituto Nacional de Meteorología, 1995. Valores normales y estadísticos de estaciones principales (1961-1990). Observatorio metereológico de Zaragoza ‘Aeropuerto’. Ministerio de Obras PÚblicas, Transporte y Medio Ambiente, España: 56 pp.

    Google Scholar 

  • Javor, B., 1989. Hypersaline environments. Microbiology and biogeochemistry. Springer-Verlag, New York, U.S.A.: 328 pp.

    Google Scholar 

  • Jenkins, B., R. L. Kitching & S. L. Pimm, 1992. Productivity, disturbance and food web structure at a local spatial scale in experimental container habitats. Oikos 65: 249–255.

    Google Scholar 

  • Lawton, J. H. & P. H. Warren, 1988. Static and dynamic explanations for patterns in food webs. Trends Ecol. Evol. 3: 242–245.

    Google Scholar 

  • Martinez, N. D., 1991. Artifacts or attributes? Effects of resolution of the Little Rock Lake food web. Ecol. Monogr. 61: 367–392.

    Google Scholar 

  • Martinez, N. D., 1992. Constant connectance in community food webs. Am. Nat. 139: 1208–1218.

    Google Scholar 

  • Martinez, N. D. & J. H. Lawton, 1995. Scale and food-web structure - from local to global. Oikos 73: 148–154.

    Google Scholar 

  • May, R. M., 1986. The search for patterns in the balance of nature: advances and retreats. Ecology 67: 1115–1126.

    Google Scholar 

  • Oksanen, L., 1983. Trophic exploitation and arctic phytomass patterns. Am. Nat. 122: 45–52.

    Google Scholar 

  • Oksanen, L., 1991. Trophic levels and trophic dynamics: a consensus emerging? Trends Ecol. Evol. 6: 58–90.

    Google Scholar 

  • Oksanen, L., S. Fretwell, J. Aruda & P. Niemela, 1981. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118: 240–261.

    Google Scholar 

  • Paine, R. T., 1980. Food webs: linkage, interaction strenght and community infrastructure. J. anim. Ecol. 49: 667–686.

    Google Scholar 

  • Paine, R. T., 1988. Food webs: road maps of interactions or grist for theoretical deveplopment? Ecology 69: 1648–1654.

    Google Scholar 

  • Paine, R. T., 1992. Food-web analysis through field measurement of per capita interaction strength. Nature 355: 73–75.

    Google Scholar 

  • Pimm, S. L., 1982. Food Webs. Chapman & Hall, London: 218 pp.

    Google Scholar 

  • Pimm, S. L., 1988. Energy flow and trophic structure. In Pomeroy, L. R. & J. J. Alberts (eds), Concepts of Ecosystem Ecology. Springer-Verlag, New York: 263–278.

    Google Scholar 

  • Pimm, S. L. & R. L. Kitching, 1987. The determinants of food chain lenghts. Oikos 50: 302–307.

    Google Scholar 

  • Pimm, S. L. & J. H. Lawton, 1977. The number of trophic levels in ecological communities. Nature 268: 329–331.

    Google Scholar 

  • Pimm, S. L., J. H. Lawton & J. E. Cohen, 1991. Food web patterns and their consequences. Nature 350: 669–674.

    Google Scholar 

  • Polis, G. A & D. R. Strong, 1996. Food web complexity and community dynamics. Am. Nat. 147: 813–846.

    Google Scholar 

  • Pueyo, J. J., 1980. Procesos diagenéticos observados en las lagunas tipo playa de la zona de Bujaraloz-Alcañiz (provincias de Zaragoza y Teruel). Revista Investigaciones Geológicas 34: 195–207.

    Google Scholar 

  • Pueyo, J. J. & M. Inglés, 1987. Magnesite formation in recent playa lakes, Los Monegros, Spain. In Marshall, J. D. (eds), Diagenesis of Sedimentary Sequences. Geological Society Special Publication: 119–122.

  • Quirantes, J., 1971. Las calizas en el Terciario continental de Los Monegros. Estudios Geológicos 27: 355–362.

    Google Scholar 

  • Schneider, D. W., 1997. Predation and food web structure along a habitat duration gradient. Oecologia 110: 567–575.

    Google Scholar 

  • Smayda, T. J., 1978. From phytoplankters to biomass. In Sournia, A. (ed.), Phytoplankton Manual. UNESCO, Paris: 273–279.

    Google Scholar 

  • Sprules, W. G. & J. E. Bowerman, 1988. Omnivory and food chain length in zooplankton food webs. Ecology 69: 418–426.

    Google Scholar 

  • Sterner, R. W., A. Bajpai & T. Adams, 1997. The enigma of food chain length: absence of theoretical evidence for dynamic constraints. Ecology 78: 2258–2262.

    Google Scholar 

  • Thièry, A., 1987. Les crustaces branchiopodes anostraca, notostraca et conchostraca des milieux limniques temporaires (dayas) au maroc. Taxonomie, biogeographie, ecologie. Tesis Doctoral, Faculte des Sciences et techniques de St Jerôme, Universite de Droit d'Economie et des Sciences d'Aix-Marseille: 406 pp.

  • Warren, P. H., 1994. Making connections in food webs. Trends Ecol. Evol. 9: 136–141.

    Google Scholar 

  • Warren, P. H., 1995. Estimating morphologically determined connectance and structure for food webs of freshwater invertebrates. Freshwat. Biol. 33: 213–221.

    Google Scholar 

  • Wetzel, R. G. & G. E., Likens, 1991. Limnological Analyses. Springer-Verlag, New York: 391 pp.

    Google Scholar 

  • Wieser, W., 1960. Benthic studies in Buzzards Bay. II. The meiofauna. Limnol. Oceanogr. 5: 121–137.

    Google Scholar 

  • Yodzis, P., 1981. The structure of assembled communities. J. Theor. Biol. 289: 674–676.

    Google Scholar 

  • Yodzis, P., 1984. The structure of assembled communities. II. J. Theor. Biol. 92: 115–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcorlo, P., Baltanás, A. & Montes, C. Food-web structure in two shallow salt lakes in Los Monegros (NE Spain): energetic vs dynamic constraints. Hydrobiologia 466, 307–316 (2001). https://doi.org/10.1023/A:1014594408119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014594408119

Navigation