Skip to main content
Log in

L-Pyroglutamic Acid Inhibits Energy Production and Lipid Synthesis in Cerebral Cortex of Young Rats In Vitro

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study we investigated the effects of L-pyroglutamic acid (PGA), which predominantly accumulates in the inherited metabolic diseases glutathione synthetase deficiency (GSD) and γ-glutamylcysteine synthetase deficiency (GCSD), on some in vitro parameters of energy metabolism and lipid biosynthesis. We evaluated the rates of CO2 production and lipid synthesis from [U-14C]acetate, as well as ATP levels and the activities of creatine kinase and of the respiratory chain complexes I-IV in cerebral cortex of young rats in the presence of PGA at final concentrations ranging from 0.5 to 3 mM. PGA significantly reduced brain CO2 production by 50% at the concentrations of 0.5 to 3 mM, lipid biosynthesis by 20% at concentrations of 0.5 to 3 mM and ATP levels by 52% at the concentration of 3 mM. Regarding the enzyme activities, PGA significantly decreased NADH:cytochrome c oxireductase (complex I plus CoQ plus complex III) by 40% at concentrations of 0.5–3.0 mM and cytochrome c oxidase activity by 22–30% at the concentration of 3.0 mM, without affecting the activities of succinate dehydrogenase, succinate:DCPIP oxireductase (complex II), succinate:cytochrome c oxireductase (complex II plus CoQ plus complex III) or creatine kinase. The results strongly indicate that PGA impairs brain energy production. If these effects also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Meister, A. 1974. The γ-glutamyl cycle. Diseases associated with specific deficiencies. Anal. Intern. Med. 81:247–253.

    Google Scholar 

  2. Van der Werf, P. and Meister, A. 1975. The metabolic formation and utilization of 5-oxo-L-proline (L-pyroglutamate, L-pyrrolidone carboxylate). Adv. Enzym. 43:519–566.

    Google Scholar 

  3. Caccia, S., Garattini, S., Ghezzi, P., and Zanini, M. G. 1982. Plasma and brain levels of glutamate and pyroglutamate after oral monosodium glutamate to rats. Toxic. Lett. 10:169–175.

    Google Scholar 

  4. McGeer, E. G. and Singh, E. 1984. Neurotoxic effects of endogenous materials: quinolinic acid, L-pyroglutamic acid, and thyroid releasing hormone (TRH). Exp. Neurol. 86:410–413.

    Google Scholar 

  5. Rieke, G. K., Scarfe, A. D., and Hunter, J. F. 1984. L-Pyroglutamate: an alternate neurotoxin for a rodent model of Huntington's Disease. Brain Res. Bull. 13:443–456.

    Google Scholar 

  6. Rieke, G. K., Smith, J., Idusuyi, O. B., Semenya, J., Howard, R., and Williams, S. 1989. Chronic intrastriatal L-pyroglutamate: neuropathology and neuron sparing like Huntington's Disease. Exp. Neurol. 104:147–154.

    Google Scholar 

  7. Xiao, X. Q. and Liu, G. Q. 1999. L-Pyroglutamic acid protects rat cortical neurons against sodium glutamate-induced injury. Chung Kuo Yao Li Hsueh Pao 20:733–776.

    Google Scholar 

  8. Jellum, E., Kluge, T., Borrensen, H. C., Stokke, O., and Eldjarn, I. 1970. Pyroglutamic aciduria: a new inborn error of metabolism. Scand. J. Clin. Lab. Invest. 26:327–335.

    Google Scholar 

  9. Larrson, A., Wachtmeister, L., von Wendt, L., Andersson, R., Hagenfeldt, L., and Herrin, K. M. 1985. Ophtalmological, psychometric and therapeutic investigation in two sisters with hereditary glutathione synthetase deficiency (5-oxoprolinuria). Neuropediatrics 16:131–136.

    Google Scholar 

  10. Larsson, A. and Anderson, M. E. 2001. Glutathione synthetase deficiency and other disorders of the γ-glutamyl cycle. In: Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (Eds.), The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York, pp. 2205–2216.

    Google Scholar 

  11. Barone, D. and Spignoli, G. 1990. Investigations on the binding properties of the nootropic agent pyroglutamic acid. Drugs Exp. Clin. Res. 16:85–99.

    Google Scholar 

  12. Bennet Jr., J. P., Logan, W. J., and Snyder, S. H. 1973. Amino acids as central nervous transmitters: the influence of ions, amino acid analogues, and ontogeny on transport systems for L-glutamic and aspartic acids and glycine into central nervous synaptosomes. J. Neurochem. 21:1533–1550.

    Google Scholar 

  13. Rothstein, J. D., Jin, L., Dykes-Hoberg, M., and Kunet, R. C. U. 1993. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. USA 90:6591–6595.

    Google Scholar 

  14. Escobedo, M. and Cravioto, J. 1973. Studies on the malabsorption syndromes. Inhibition of (Na+-K+) ATPase of small intestine microvilli by pyrrolidone carboxylic acid. Clin. Chim. Acta 49:147–151.

    Google Scholar 

  15. Brennan Jr., W. A., Bird, E. D., and Aprille, J. R. 1985. Regional mitochondrial respiratory activity in Huntington's Disease brain. J. Neurochem. 44:1948–1950.

    Google Scholar 

  16. Bates, T. E., Almeida, A, Heales, S. I. R., and Clark, J. B. 1994. Postnatal development of the complexes of the electron transport chain in isolated rat brain mitochondria. Dev. Neurosci. 16:321–327.

    Google Scholar 

  17. Silva, A. R., Ruschel, C., Helegda, C., Brusque, A. M., Wannmacher, C. M. D., Wajner, M., and Dutra-Filho, C. S. 1999. Inhibition of rat brain lipid synthesis in vitro by 4-hydroxybutyric acid. Metab. Brain Dis. 14:157–164.

    Google Scholar 

  18. Govinatzki, M. T., Velleda, L. S., Trindade, V. M. T., Nagel, F. M., Bueno, D., and Perry, M. L. S. 1997. Amino acid metabolism in rat hippocampus during the period of brain growth spurt. Neurochem. Res. 22:23–26.

    Google Scholar 

  19. Jaworek, D., Gruber, W., and Bergemeyer, H. U. 1974. Adenosine-58-triphosphate. Determination with 3-phosphoglycerate kinase. In: Bergmeyer, H. U. (Ed.), Methods of enzymatic analysis. Academic Press, New York, pp. 2097–2101.

    Google Scholar 

  20. Lust, W. D., Feussner, G. K., Barbehenn, E. K., and Passonneau, J. V. 1981. The enzymatic measurement of adenine nucleotides and P-creatinine in picomole amounts. Anal. Biochem. 110:258–266.

    Google Scholar 

  21. Fischer, J. C., Ruitenbeek, W., Berden, J. A., Trijbels, J. M., Veerkamp, J. H., Stadhouders, A. M., Sengers, R. C., and Janssen, A. J. 1985. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin. Chim. Acta 153:23–36.

    Google Scholar 

  22. Rustin, P., Chretien, D., Bourgeron, T., Gérard, B., Röting, A., Saudubray, J. M., and Munnich, A. 1994. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta 228:35–51.

    Google Scholar 

  23. Hughes, B. P. 1962. A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin. Chim. Acta 7:597–604.

    Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  25. Martensson, J. and Meister, A. 1991. Glutathione deficiency decreases tissue ascorbate levels in newborn rats: ascorbate spares glutathione and protects. Proc. Natl. Acad. Sci. USA 88:4656–4660.

    Google Scholar 

  26. Marklund, S. L., Midander, J., and Westman, G. 1984. CuZn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in glutathione dismutase human fibroblasts. Biochim. Biophys. Acta 798:302–305.

    Google Scholar 

  27. Larsson, A. and Hagenfeldt, L. 1983. Hereditary glutathione synthetase deficiency in man. In: Larson, A., Orrenius, S., Holmgren, A., and Mannervik, B. (Eds.), Functions of glutathione-biochemical, physiology, toxicology and clinical aspects. Raven Press, New York, pp. 317–324.

    Google Scholar 

  28. Wyss, M., Schlegel, J., James, P., Eppenberger, H. M., and Wallimann, T. 1990. Mitochondrial creatine kinase from chicken brain. J. Biol. Chem. 265:15900–15908.

    Google Scholar 

  29. Oldendorf, G. F. 1973. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol. 224:1450–1453.

    Google Scholar 

  30. Wright, S. H. Kippen, I, Klinebeg, J. R., and Wright, E. M. 1980. Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush border. J. Membr. Biol. 57:73–82.

    Google Scholar 

  31. Hennebery, R. C., Novelli, A., Cox, J. A., and Lysko, P. G. 1989. Neurotoxicity at the N-methyl-D-aspartate receptor in energy-compromised neurons: a hypothesis for cell death in aging and disease. Ann. N. Y. Acad. Sci. 568:225–233.

    Google Scholar 

  32. Hoffmann, G. F., Meier-Augenstein, W., Stöckler, S., Surtess, R., Rating, D., and Nyhan, W. L. 1993. Physiology and pathophysiology of organic acids in cerebrospinal fluid. J. Inher. Metab. Dis. 16:648–669.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A.R., Silva, C.G., Ruschel, C. et al. L-Pyroglutamic Acid Inhibits Energy Production and Lipid Synthesis in Cerebral Cortex of Young Rats In Vitro. Neurochem Res 26, 1277–1283 (2001). https://doi.org/10.1023/A:1014289232039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014289232039

Navigation