Skip to main content
Log in

The adaptive landscape as a conceptual bridge between micro- and macroevolution

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

An adaptive landscape concept outlined by G.G. Simpson constitutes the major conceptual bridge between the fields of micro- and macroevolutionary study. Despite some important theoretical extensions since 1944, this conceptual bridge has been ignored in many empirical studies. In this article, we review the status of theoretical work and emphasize the importance of models for peak movement. Although much theoretical work has been devoted to evolution on stationary, unchanging landscapes, an important new development is a focus on the evolution of the landscape itself. We also sketch an agenda of empirical issues that is inspired by theoretical developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold, S.J., 1988. Quantitative genetics and selection in natural populations: microevolution of vertebral numbers in the garter snake, Thamnophis elegans, pp. 619–636 in Proc. 2nd Intern. Conf. Quantitative Genetics, edited by B.S. Weir, E.J. Eisen, M.M. Goodman & G. Namkoong. Sinauer, Sunderland, M.A.

    Google Scholar 

  • Arnold, S.J., 1992. Constraints on phenotypic evolution. Am. Nat. 140: S85–S107.

    Google Scholar 

  • Arnold, S.J., 1994. Multivariate inheritance and evolution: a review of the concepts, pp. 17–48 in Quantitative Genetic Studies of the Evolution of Behavior, edited by C.R.P. Boake. University of Chicago Press, Chicago.

    Google Scholar 

  • Arnold, S.J. & A.F. Bennett, 1988. Behavioral variation in natural populations. V. Morphological correlates of locomotion in the garter snake Thamnophis radix. Biol. J. Linn. Soc. 34: 175–190.

    Google Scholar 

  • Arnold, S.J. & P.C. Phillips, 1999. Hierarchical comparison of genetic variance-covariance matrices. II. Coastal-inland divergence in the garter snake, Thamnophis elegans. Evolution 53: 1516–1527.

    Google Scholar 

  • Badyaev, A.V. & G.E. Hill, 2000. The evolution of sexual dimorphism in the house finch. I. Population divergence on morphological covariance structure. Evolution 54: 1784–1794.

    Google Scholar 

  • Barton, N.H. & M. Turelli, 1987. Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genet. Res. 49: 157–173.

    Google Scholar 

  • Brodie, E.D. III, 1992. Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 47: 1284–1298.

    Google Scholar 

  • Brodie, E.D. III, A.J. Moore & F.J. Janzen, 1995. Visualizing and quantifying natural selection. Trends Ecol. Evol. 10: 313–318.

    Google Scholar 

  • Brown, J.S. & T.L. Vincent, 1992. Organization of predator-prey communities as an evolutionary game. Evolution 46: 1269–1283.

    Google Scholar 

  • Bull, J.J., 1987. Evolution of phenotypic variance. Evolution 41: 303–315.

    Google Scholar 

  • Charlesworth, B., 1993a. The evolution of sex and recombination in a varying environment. J. Hered. 84: 345–350.

    Google Scholar 

  • Charlesworth, B., 1993b. Directional selection and the evolution of sex and recombination. Genet. Res. 61: 205–224.

    Google Scholar 

  • Charlesworth, B., R. Lande & M. Slatkin, 1982. A neo-Darwinian commentary on macroevolution. Evolution 36: 474–498.

    Google Scholar 

  • Cheverud, J.M., 1984. Quantitative genetics and developmental constraints on evolution by selection. J. Theor. Biol. 110: 155–171.

    Google Scholar 

  • Curtsinger, J.W., 1984a., Evolutionary landscapes for complex selection. Evolution 38: 359–367.

    Google Scholar 

  • Curtsinger, J.W., 1984b. Evolutionary principles for polynomial models of frequency-dependent selection. Proc. Natl. Acad. Sci. 81: 2840–2842.

    Google Scholar 

  • Dawkins, R., 1996. Climbing Mount Improbable. W.W. Norton, New York.

    Google Scholar 

  • Dudley, S.A., 1996. The response to differing selection on plant physiological traits: evidence for local adaptation. Evolution 50: 103–110.

    Google Scholar 

  • Eldredge, N., 1999. The Pattern of Evolution. W.H. Freeman and Co., New York.

    Google Scholar 

  • Eldredge, N. & J. Cracraft, 1980. Phylogenetic Patterns and the Evolutionary Process. Columbia University Press, New York, N.Y.

    Google Scholar 

  • Emerson, S.B. & S.J. Arnold, 1989. Intra-and interspecific relationships between morphology, performance, and fitness, pp. 295–314 in Complex Organismal Functions: Integration and Evolution, edited by D.B. Wake & G. Roth. Wiley, Chichester, U.K.

    Google Scholar 

  • Endler, J.A., 1986. Natural Selection in the Wild. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Ewens, W.J., 1979. Mathematical Population Genetics. Springer-Verlag, New York.

    Google Scholar 

  • Feder, J.F., 1998. The apple maggot fly, Rhagoletis pomonella: flies in the face of conventional wisdom, pp. 130–144 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, New York.

    Google Scholar 

  • Felsenstein, J., 1973. Maximum likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25: 471–492.

    Google Scholar 

  • Felsenstein, J., 1979. Excursions along the interface between disruptive and stabilizing selection. Genetics 93: 773–795.

    Google Scholar 

  • Felsenstein, J., 1985. Phylogenies and the comparative method. Am. Nat. 125: 1–15.

    Google Scholar 

  • Felsenstein, J., 1988. Phylogenies and quantitative characters. Ann. Rev. Ecol. Syst. 19: 445–471.

    Google Scholar 

  • Flury, B., 1988. Common Principal Components and Related Multivariate Models. Wiley, New York, N.Y.

    Google Scholar 

  • Garcia-Ramos, G. & M. Kirkpatrick, 1997. Genetic models of adaptation and gene flow in peripheral populations. Evolution 51: 21–28.

    Google Scholar 

  • Gavrilets, S., 1997. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12: 307–312.

    Google Scholar 

  • Gould, S.J., 1997. Self-help for a hedgehog stuck on a molehill. Evolution 51: 1020–1023.

    Google Scholar 

  • Gould, S.J. & N. Eldredge, 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiol. 3: 115–151.

    Google Scholar 

  • Hansen, T.F. & E.P. Martins, 1996. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50: 1404–1417.

    Google Scholar 

  • Hansen, T.F., 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51: 1341–1351.

    Google Scholar 

  • Hendry, A.P. & M.T. Kinnison, 1999. The pace of modern life: measuring rates of microevolution. Evolution 53: 1637–1653.

    Google Scholar 

  • Hendry, A.P., J.K. Wenburg, P. Bentzen, E. C. Volk & T. P. Quinn, 2000. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290: 516–518.

    Google Scholar 

  • Hendry, A.P., T. Day & E. B. Taylor, 2001. Population mixing and the adaptive divergence of quantitative characters in discrete populations: a theoretical framework for empirical tests. Evolution 55: 459–466.

    Google Scholar 

  • Janzen, F.J. & H.S. Stern, 1998. Logistic regression for empirical studies of multivariate selection. Evolution 52: 1564–1571.

    Google Scholar 

  • Karn, M.L. & L.S. Penrose, 1951. Birth weight and gestation time in relation to maternal age, parity, and infant survival. Ann. Eugenics 16: 147–164.

    Google Scholar 

  • Kimura, M., 1965. Attainment of quasi-linkage equilibrium when gene frequencies are changing by natural selection. Genetics 52: 875–890.

    Google Scholar 

  • Kingsolver, J.G., H.E. Hoekstra, J.M. Hoeskstra, D. Berrigan, S.N. Vignieri, C.E. Hill, A. Hoang, P. Gilbert & P. Beerli, 2001. The strength of phenotypic selection in natural populations. Am. Nat. 157: 245–261.

    Google Scholar 

  • Kirkpatrick, M., 1982. Quantum evolution and punctuated equilibrium in continuous genetic characters. Am. Nat. 119: 833–848.

    Google Scholar 

  • Kurtén, B., 1959. Rates of evolution in fossil mammals. Cold Spring Harbor Symp. Quant. Biol. 24: 205–215.

    Google Scholar 

  • Lande, R., 1976a. Natural selection and random genetic drift in phenotypic evolution. Evolution 30: 314–334.

    Google Scholar 

  • Lande, R., 1976b. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26: 221–235.

    Google Scholar 

  • Lande, R., 1979. Quantitative genetic analysis of multivariate evolution, applied to brain-body size allometry. Evolution 33: 402–416.

    Google Scholar 

  • Lande, R., 1980a. Microevolution in relation to macroevolution. Paleobiol. 6: 233–238.

    Google Scholar 

  • Lande, R., 1980b. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34: 292–305.

    Google Scholar 

  • Lande, R., 1980c. The genetic covariance between characters maintained by pleiotropic mutation. Genetics 94: 203–215.

    Google Scholar 

  • Lande, R., 1981. The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99: 541–553.

    Google Scholar 

  • Lande, R., 1986. The dynamics of peak shifts and the pattern of morphological evolution. Paleobiol. 12: 343–354.

    Google Scholar 

  • Lande, R., 1988. Genetics and demography in biological conservation. Science 241: 1455–1460.

    Google Scholar 

  • Lande, R. & S.J. Arnold, 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.

    Google Scholar 

  • Lande, R. & S. Shannon, 1996. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50: 434–437.

    Google Scholar 

  • Lewontin, R.C., 1958. A general method for investigating the equilibrium of gene frequencies in a population. Genetics 43: 419–434.

    Google Scholar 

  • Lynch, M., 1990. The rate of morphological evolution in mammals from the standpoint of neutral expectation. Am. Nat. 136: 727–741.

    Google Scholar 

  • Lynch, M. & R. Lande, 1993. Evolution and extinction in response to environmental change, pp. 234–250 in Biotic Interactions and Global Change, edited by P. Kareiva, J.G. Kingsolver & R.B. Huey. Sinauer, Sunderland, MA.

    Google Scholar 

  • Martins, E.P. & T.F. Hansen, 1996. A microevolutionary link between phylogenies and comparative data, pp. 273–288 in New Uses of New Phylogenies, edited by P.H. Harvey, A.J. Leigh Brown, J. Maynard Smith & S. Nee. Oxford University Press, Oxford,U.K.

    Google Scholar 

  • Mather, K., 1941. Variation and selection of polygenic characters. J. Genetics 41: 159–193.

    Google Scholar 

  • Partridge, L., 1978. Habitat selection, pp. 351–376in Behavioral Ecology, edited by J.R. Krebs & N.B. Davies. Blackwell Scientific, Oxford, England.

    Google Scholar 

  • Pfrender, M., 1998. Evolutionary dynamics of molecular and quantitative genetic variation in ephemeral pond populations of Daphnia pulex. Thesis Dissertation, University of Oregon, Eugene, Oregon.

    Google Scholar 

  • Phillips, P.C. & S.J. Arnold, 1989. Visualizing multivariate selection. Evolution 43: 1209–1222.

    Google Scholar 

  • Phillips, P.C. & S.J. Arnold, 1999. Hierarchical comparison of genetic variance-covariance matrices. I. Using the Flury hierarchy. Evolution 53: 1506–1515.

    Google Scholar 

  • Phillips, P.C., M.C. Whitlock & K. Fowler, 2001. Inbreeding changes the shape of the genetic covariance matrix in Drosophila melanogaster. Genetics 158: 1137–1145.

    Google Scholar 

  • Price, T.D., P.R. Grant & P.T. Boag, 1984. Genetic changes in the morphological differentiation of Darwin' ground finches, pp. 49–66 in Population Biology and Evolution, edited by K Wohrmann & V. Loeschske. Springer-Verlag, Berlin.

    Google Scholar 

  • Provine, W.B., 1986. Sewall Wright and Evolutionary Biology. University of Chicago Press, Chicago, I.L.

    Google Scholar 

  • Rensch, B., 1959. Evolution Above the Species Level. Wiley, New York, N.Y.

    Google Scholar 

  • Reznick, D.N. & C.K. Ghalambor, 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113: 183–198.

    Google Scholar 

  • Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.

    Google Scholar 

  • Rieseberg, L.H., M.A. Archer & R.K. Wayne, 1999. Transgressive segregation, adaptation and speciation. Heredity 83: 363–372.

    Google Scholar 

  • Rice, S.H., 1998. The evolution of canalization and the breaking of von Baer' laws: modeling the evolution of development with epistasis. Evolution 52: 647–656.

    Google Scholar 

  • Roff, D.A., 2000. The evolution of the G matrix: selection or drift? Heredity 84: 135–142.

    Google Scholar 

  • Rundle, H.D. & M.C. Whitlock, 2001. A genetic interpretation of ecologically dependent isolation. Evolution 55: 198–201.

    Google Scholar 

  • Schluter, D., 1984. Morphological and phylogenetic relations among the Darwin' finches. Evolution 38: 921–930.

    Google Scholar 

  • Schluter, D., 1988. Estimating the form of natural selection on a quantitative trait. Evolution 42: 849–861.

    Google Scholar 

  • Schluter, D., 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50: 1766–1774.

    Google Scholar 

  • Schluter, D. & D. Nychka, 1994. Exploring fitness surfaces. Am. Nat. 143: 597–616.

    Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford, England.

    Google Scholar 

  • Schmalhausen, I.I., 1949. Factors of Evolution, The Theory of Stabilizing Selection. University of Chicago Press, Chicago, I.L.

    Google Scholar 

  • Shaw, F.H., R.G. Shaw, G.S. Wilkinson & M.H. Turelli, 1995. Changes in genetic variances and covariances: G whiz! Evolution 49: 1260–1267.

    Google Scholar 

  • Simpson, G.G., 1944. Tempo and Mode in Evolution. Columbia University Press, New York, N.Y.

    Google Scholar 

  • Simpson, G.G., 1953. The Major Features of Evolution. Columbia University Press, New York.

    Google Scholar 

  • Sinervo, B., P. Doughty, R.B. Huey & K. Zamudio, 1992. Allometric engineering: a causal analysis of natural selection on offspring size. Science 258: 1927–1930.

    Google Scholar 

  • Slatkin, M. & R. Lande, 1976. Niche width in a fluctuating environment - density independent model. Am. Nat. 110: 31–55.

    Google Scholar 

  • Stanley, S.M., 1979. Macroevolution: Pattern and Process. W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Steppan, S.J., 1997a. Phylogenetic analysis of phenotypic covariance structure. I. Contrasting results from matrix correlation and common principal component analyses. Evolution 51: 571–586.

    Google Scholar 

  • Steppan, S.J., 1997b. Phylogenetic analysis of phenotypic covariance structure. II. Reconstructing matrix evolution. Evolution 51: 587–594.

    Google Scholar 

  • Svensson, E. & B. Sinervo, 2000. Experimental excursions on adaptive landscapes: density-dependent selection on egg size. Evolution 54: 1396–1403.

    Google Scholar 

  • Thompson, J.N., 1998. Rapid evolution as an ecological process. Trends Ecol. Evol. 13: 329–332.

    Google Scholar 

  • Turelli, M., 1988. Phenotypic evolution, constant covariances, and the maintenance of additive variance. Evolution 42: 1342–1347.

    Google Scholar 

  • Via, S., 1991. The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clones. Evolution 45: 827–852.

    Google Scholar 

  • Vrba, E.S., 1983. Macroevolutionary trends: new perspectives on the roles of adaptation and incidental effect. Science 221: 387–389.

    Google Scholar 

  • Waddington, C.H., 1957. The Strategy of the Genes. MacMillan, New York, N.Y.

    Google Scholar 

  • Williams, G.C., 1992. Natural Selection: Domains, Levels, and Challenges. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Willis, J.H., J.A. Coyne & M. Kirkpatrick, 1991. Can one predict the evolution of quantitative characters without genetics? Evolution 45: 441–444.

    Google Scholar 

  • Whitlock, M.C., 1995. Variance-induced peak shifts. Evolution 49: 252–259.

    Google Scholar 

  • Whitlock, M.C. & P. C. Phillips, 2000. The exquisite corpse: a shifting view of the shifting balance. Trends Ecol. Evol. 15: 347–348.

    Google Scholar 

  • Whitlock, M.C., P.C. Phillips, F.B.-G. Moore & S.J. Tonsor, 1995. Multiple fitness peaks and epistasis. Ann. Rev. Ecol. Syst. 26: 601–629.

    Google Scholar 

  • Wright, S., 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

    Google Scholar 

  • Wright, S., 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. VI Inter. Congr. Genet. 1: 356–366.

    Google Scholar 

  • Wright, S., 1940. The statistical consequences of Mendelian heredity in relation to speciation, pp. 161–183 in The New Systematics, edited by J.S. Huxley. Clarendon Press, Oxford.

    Google Scholar 

  • Wright, S., 1945. Tempo and mode in evolution: a critical review. Ecology 26: 415–419.

    Google Scholar 

  • Wright, S., 1955. Classification of the factors of evolution. Cold Spring Harbor Symp. Quant. Biol. 20: 16–24.

    Google Scholar 

  • Wright, S., 1968. Evolution and the Genetics of Populations, Vol. 1. Genetic and Biometric Foundations. University of Chicago Press, Chicago, I.L.

    Google Scholar 

  • Wright, S., 1969. Evolution and the Genetics of Populations, Vol. 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago, I.L.

    Google Scholar 

  • Wright, S., 1982. Character change, speciation, and the higher taxa. Evolution 36: 427–443.

    Google Scholar 

  • Zeng, Z.-B., 1988. Long-term correlated response, interpopulation covariance, and interspecific allometry. Evolution 42: 363–374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, S.J., Pfrender, M.E. & Jones, A.G. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112, 9–32 (2001). https://doi.org/10.1023/A:1013373907708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013373907708

Navigation