Skip to main content
Log in

SOM management in the tropics: Why feeding the soil macrofauna?

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

This paper synthesises information on the food requirements of soil macroinvertebrates and some of their effects on soil organic matter dynamics. Some clues to techniques that would optimise their activities through organic matter management are suggested. Soil macroinvertebrates can consume almost any kind of organic residues in mutualistic association with soil microflora. Significant amounts estimated at several T per ha of predominantly easily assimilable C are used yearly in natural ecosystems as energy to sustain these activities. Sources of C used are highly variable depending on the feeding regime. The largest part of the energy assimilated (e.g., 50% by the tropical earthworm Millsonia anomala) is actually spent in burrowing and soil transport and mixing. Bioturbation often affects several thousand tons of soil per hectare per year and several tenth of m3 of voids are created in soil. A great diversity of biogenic structures accumulate and their nature and persistance over time largely controls hydraulic soil properties. The OM integrated into the compact biogenic structures (termite mounds, earthworm globular casts) is often protected from further decomposition. Most management practices have negative effects on the diversity and abundance of macroinvertebrate communities. Structures inherited from faunal activities may persist for some weeks to years and the relationship between their disappearance and soil degradation is rarely acknowledged. When SOM supply is maintained but diversity is not, the accumulation in excess of structures of one single category may have destructive effects on soil. It is therefore essential to design practices that provide the adequate organic sources to sustain the activity and diversity of invertebrates. Special attention should also be paid to the spatial array of plots and rotations in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alegre JC, Pashanasi B & Lavelle P (1996) Dynamics of soil physical properties in a low input agricultural system inoculated with the earthworm Pontoscolex corethrurus in the amazon region of Peru. SSSA Journal 60: 1522–1529

    CAS  Google Scholar 

  • Andrén O, Brussaard L & Clarholm M (1999) Soil organism influence on ecosystem-level processes - by passing the ecological hierarchy? Appl Soil Ecol 11(2-3): 177–188

    Article  Google Scholar 

  • Barois I., Lavelle P, Brossard M, Tondoh J, Martinez M, Rossi JP, Senapati BK, Angeles A, Fragoso C, Jimenez JJ, Decaëns T, Lattaud C, Kanyonyo J, Blanchart E, Chapuis L, Brown GG & Moreno A. (1999) Ecology of earthworm species with large environmental tolerance and/or extended distribution. In: Lavelle P, Brussaard L & Hendrix P (eds) Earthworm Management in Tropical Agroecosystems, pp 57–86. Wallingford, UK: CAB International Press

    Google Scholar 

  • Barois I & Lavelle P (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidæ, Oligochæta). Soil Biol Biochem 18(5): 539–541

    Article  Google Scholar 

  • Barois I, Villemin G, Lavelle P & Toutain F (1993) Transformation of the soil structure through Pontoscolex corethrurus (Oligochaeta) intestinal tract. Geoderma 56: 57–66

    Article  Google Scholar 

  • Barros ME (1999) Effet de la macrofaune sur la structure et les processus physiques du sol de paturages dégradés d'Amazonie, Doctorate thesis, University Paris VI

  • Beare M & Lavelle P. 1998 Regulation of Microbial Activity and Organic Matter Dynamics by Macroorganisms: Integrating Biological Function in Soil. ISSS Congress, Symposium N° 9 (CD-Rom), Montpellier, France

  • Bernier N (1998) Earthworm feeding activity and development of the humus profile. Biol Fertil Soil 26: 215–223

    Article  Google Scholar 

  • Bignell, DE (1994) Soil-feeding and gut morphology in higher termites. In: Hunt JH & Nalepa CA (eds) Nourishment and Evolution in Insect Societies, pp 131–158 Boulder, Colorado: Westview Point

    Google Scholar 

  • Blanchart E, Albrecht A, Alegre J, Duboisset A, Villenave C, Pashanasi B, Lavelle P & Brussaard L (1999) Effects of earthworms on soil structure and physical properties. In: Earthworm Management in Tropical Agroecosystems, pp 149–172. Lavelle P, Brussaard L & Hendrix P (eds). Wallingford, UK: CAB International Press

    Google Scholar 

  • Blanchart E, Lavelle P, Braudeau E, Le Bissonais Y & Valentin C (1997) Regulation of soil structure by geophagous earthworm activities in humid savannas of Cote d'Ivoire. Soil Biol Biochem 29(3/4): 431–439

    Article  CAS  Google Scholar 

  • Brown GG, Pashanasi B, Villenave C, Patron JC, Senapati BK, Giri S, Barois I, Lavelle P, Blanchart E, Blakemore RJ, Spain AV & Boyer J (1999) Effects of earthworms on plant production in the tropics In: Lavelle P, Brussaard L & Hendrix P (eds). Earthworm Management in Tropical Agroecosystems, pp 87–148 Wallingford, UK: CAB International Press

    Google Scholar 

  • Brown GG (2000) Comment les vers de terre influencent la croissance des plantes: études en serre sur les interactions avec le systèmes racinaire. Doctorate thesis, University Paris VI.

  • Brussaard L (1998) Soil fauna, guilds, functional groups and ecosystem processes. Appl Soil Ecol 9: 123–135

    Article  Google Scholar 

  • Butler JHA & Buckerfield JC (1979) Digestion of lignin by termites. Soil Biol Biochem 11: 507–513

    Article  CAS  Google Scholar 

  • Charpentier F (1996) Effets de l'inoculation d'un ver de terre endogé sur la dynamique de la matière organique d'un sol ferrallitique cultivé de l'Amazonie Péruvienne. Doctorate thesis, University Paris VI

  • Chauvel A, Grimaldi M, Barros E, Blanchart E, Desjardins Th, Sarrazin M & Lavelle P (1999) Pasture degradation by an Amazonian earthworm. Nature 389: 32–33

    Article  CAS  Google Scholar 

  • Cockson LJ (1987) 14C-lignin degradation by three Australian termites. World Sci Technol 21: 11–25

    Google Scholar 

  • Collins NM (1980) The distribution of soil macrofauna on the west ridge of Gunung (Mount) Mulu, Sarawak. Oecologia 44: 263–275

    Article  Google Scholar 

  • Curry JP (1987) The invertebrate fauna of grassland and its influence on productivity. 1. The composition of the fauna. Grass For Sci 42: 103–120

    Article  Google Scholar 

  • Decaëns T (1999). Rôle fonctionnel et réponses aux pratiques agricoles des vers de terre et autres ingénieurs écologiques dans les savanes Colombiennes. Doctorate thesis, University Paris VI

  • Decaëns T, Lavelle P, Jimenez Jaen JJ, Escobar G & Ripstein G (1994) Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. Eur J Soil Biol 30(4): 157–168

    Google Scholar 

  • De Souza OFF & Brown VK (1994) Effects of habitat fragmentation on Amazonia termite communities. J Trop Ecol 10: 197–206

    Article  Google Scholar 

  • Eggleton P, Bignell DE, Wood TG, Sands WA, Mawdsley N, Lawton JH & Bignell NC (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, Southern Cameroon. Phil Trans Roy Soc London B 351: 51–68

    Google Scholar 

  • Eggleton P, Homathevi R, Jeeva D, Jones D, Davis RG & Maryati M (1997) The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, East Malaysia. Ecotropica 3: 119–128

    Google Scholar 

  • Elkins NZ, Sabol GZ, Ward TJ & GW Whitford (1986) The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia 68: 521–528

    Article  Google Scholar 

  • Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation 7: 1221–1244

    Article  Google Scholar 

  • Garnier-Sillam E, Toutain F. & Renoux J. (1988) Comparaison de l'influence de deux termitières (Humivore et champignoniste) sur la stabilité structurale de sols forestiers tropicaux. Pedobiologia 32: 89–97

    Google Scholar 

  • Gilot C, Lavelle P, Blanchart E, Keli J, Kouassi P & Guillaume G (1995) Biological activity of soils in Hevea stands of different ages in Côte d'Ivoire. Act Zool Fennic 196: 186–190

    Google Scholar 

  • Hallaire V, Curmi P, Duboisset A, Lavelle P & Pashanasi B (2000) Soil structure changes induced by the tropical earthworm Pontoscolex corethrurus and organic inputs in a Peruvian ultisol. Eur J Soil Biol 36: 35–44

    Article  Google Scholar 

  • Higashi M, Abe T & Burns TP (1992) Carbon-nitrogen balance and termite Ecology. Proc Roy Soc London B 249: 303–308

    Google Scholar 

  • Lapied E & Rossi JP (2000) relating internal morphology of three tropical earthworms to their effects on soil aggregation. XII International Colloquium of Soil Zoology. Abstracts, p 43

  • Lattaud C, Locati S, Mora P, Rouland C & Lavelle P (1998) The diversity of digestive systems in the tropical geophagous earthworms. Appl Soil Ecol 9: 189–195

    Article  Google Scholar 

  • Lavelle P (1978) Les Vers de Terre de la savane de Lamto (Côte d'Ivoire): peuplements, populations et fonctions dans l'écosystème, Doctorate thesis, University Paris VI

  • Lavelle P, Blanchart E, Martin A, Martin S, spain A, Toutain F, Barois I & Schaefer R (1993) A hierarchical model for decomposition in terrestrial ecosystems. Application to soils in the humid tropics. Biotropica 25(2): 130–150

    Article  Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27: 93–132

    Article  Google Scholar 

  • Lavelle P, Bignell D, Lepage M et al. (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33(4): 159–193

    CAS  Google Scholar 

  • Lavelle P, Pashanasi B, Charpentier FR, Gilot C, Rossi P, Derouard L, André J, Ponge JF & Bernier N (1998) Large-scale effects of earthworms on soil organic matter and nutrient dynamics. In: Edwards CA (ed) Earthworm Ecology, pp 103–122. Columbus, Ohio: St. Lucie Press.

    Google Scholar 

  • Lavelle P, Brussaard L & Hendrix P (eds) (1999) Earthworm Management in Tropical Agroecosystems. Wallingford, UK: CAB International Press

    Google Scholar 

  • Le Bayon RC & Binet F. (1999) Rainfall effects on erosion of earthworm casts and phosphorus transfers by water runoff. Biol Fertil Soils 30: 7–13

    Article  CAS  Google Scholar 

  • Lewis DH (1985) Symbiosis and mutualism: crisp concepts and soggy semantics. In: Boucher DH (ed) Biology of Mutualism, pp 29–43. Beckenham: Croom Helm

    Google Scholar 

  • Mando A & Miedema R (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Appl Soil Ecol 6(3): 241–249

    Article  Google Scholar 

  • Martin A (1991) Short-and long-term effects of the endogeic earhworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biol Fertil Soil 11: 234–238

    Article  Google Scholar 

  • Martin A, Mariotti A, Balesdent J & Lavelle P (1991) Soil organic matter assimilaion by a geophagous tropical earthworm based on 13C measurements. Ecology 73(1): 118–128

    Article  Google Scholar 

  • Martin A & Lavelle P (1992) Effect of soil organic matter quality on its assimilation by Millsonia anomala, a tropical geophagous earthworm. Soil Biol Biochem 24: 1535–1538

    Article  Google Scholar 

  • Martin A, Balesdent J & Mariotti A (1992) Earthworm diet related to soil organic matter dynamics through 13C measurements. Oecologia 91: 23–29

    Google Scholar 

  • Martius C (1994) Diversity and ecology of termites in Amazonian forests. Pedobiologia 38: 407–428

    Google Scholar 

  • M'ba C (1987) Vermicomposting and biological N-fixation. In: Szegi J (ed) Symposium on Soil Biology and Conservation of the Biosphere, pp 547–552. Budapest: Akademiai Kiado

    Google Scholar 

  • Parmelee RW, Bohlen PJ & Blair J (1998) Earthworms and nutrient cycling processes: Integrating across the ecological hierarchy. In: Edwards CS (ed) Earthworm Ecology, pp 123–143. Boca Raton: St. Lucie Press

    Google Scholar 

  • Pashanasi B, Lavelle P & Alegre J (1996) Effect of inoculation with the endogeic earthworm Pontocolex corethrurus on soil chemical characteristics and plant growth in a low-input agricultural system of Peruvian Amazonia. Soil Biol Biochem 28(6): 801–810

    Article  CAS  Google Scholar 

  • Pashanasi B, Melendez G, Szott L & Lavelle P (1992) Effect of Inoculation with the Endogeic Earthworm Pontoscolex Corethrurus (Glossoscolecidae) on N Availability, SoilMicrobial Biomass and the Growth of Three Tropical Fruit Tree Seedlings in a Pot Experiment. Soil Biol Biochem 24(12): 1655–1659

    Article  Google Scholar 

  • Rossi JP (1998) Rôle fonctionnel de la distribution spatiale des vers de terre dans une savane humide de Côte d'Ivoire. Doctorate thesis, University Paris VI

  • Scheu S (1993) Litter microflora soil macrofauna interactions in lignin decomposition - a laboratory experiment with C-14–labelled lignin. Soil Biol Biochem 25(12): 1703–1711

    Article  CAS  Google Scholar 

  • Spain AV, Safigna PG & Wood AW (1990) Tissue carbon sources for Pontoscolex corethrurus (Oligochaeta, Glossoscolecidae) in a sugarcane ecosystem. Soil Biol Biochem 22: 703–706

    Article  CAS  Google Scholar 

  • Spain AV and Reddell P 1996 Δ 13C values of selected termites (Isoptera) and termite-modified materials. Soil Biol Biochem 28: 1585–1593

    Article  CAS  Google Scholar 

  • Spain V & Okello-Oloya T (1985) Variation in the growth of two pasture plants on soils associated with the termitaria of Amitermes laurensis (Isoptera: Termitinae). 4th Australian Conference on Grassland Invertebrates Ecology, Lincoln College, Canterbury, 13-17 May 1985, Caxton Press

  • Swift MJ, Heal OW & Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Oxford: Blackwell Scientific

    Google Scholar 

  • Tayasu I, Subimoto A, Wada E & Abe T (1994). Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81: 229–231

    Article  Google Scholar 

  • Toutain F (1987) Activité biologique des sols, modalités et lithodépendance. Biol Fertil Soils 3: 31–38

    Article  Google Scholar 

  • Villenave C, Charpentier F, Lavelle P, Feller C, Brossard M, Brussaar L, Pashanasi B, Barois I & Albrecht A (1999) Effects of earthworms on soil organic matter and nutrient dynamics. In: Lavelle P, Brussaard L and Hendrix P (eds) Earthworm Management in Tropical Agroecosystems, pp 173–197. Wallingford, UK: CAB International Press

    Google Scholar 

  • Wood TG (1978) Food and feeding habits of termites. In: Brian MV (ed) Production Ecology of Ants and Termites, pp 55–80. Cambridge: Cambridge University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Lavelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavelle, P., Barros, E., Blanchart, E. et al. SOM management in the tropics: Why feeding the soil macrofauna?. Nutrient Cycling in Agroecosystems 61, 53–61 (2001). https://doi.org/10.1023/A:1013368715742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013368715742

Navigation