Skip to main content
Log in

The longitudinal distribution of copepods in Corumbá Reservoir, State of Goiás, Brazil

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The assessment of factors that determine the spatial distribution of zooplankton abundance is a central issue in zooplankton ecology. Since these factors are, in the most cases, spatially autocorrelated, especially in reservoirs, it is frequently difficult to isolate the primary causes that explain the variation in zooplankton abundance. In this paper, the spatial variation of copepods in Corumbá Reservoir (Goiás, Brazil) was studied. Sets of variables were used to model copepod abundance variation: limnology (abiotic variables), phytoplankton and spatial position of sampling sites. The copepod assemblage was composed of Thermocyclops minutus, Thermocyclops decipiens, Mesocyclops longisetus and Notodiaptomus iheringi. Along the reservoir's main axis, abundance increases, albeit not linearly, towards the lacustrine zone. High abundance, similar to that found in the lacustrine region, was also observed in the lateral arms. These patterns were very similar for different years and seasons. Copepods were significantly correlated with phytoplankton and geography. After controlling for the effect of space, the relationship between copepods and phytoplankton was not significant (partial Mantel test). This result indicates that hydrology is the primary process that controls not only the abundance of copepods, but also limnological features and food resources, which are commonly used to explain variations in zooplankton abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betsil, R. K. & M. J. Van Den Avely, 1994. Spatial heterogeneity of reservoir zooplankton: a matter of timing? Hydrobiologia 277: 63–70.

    Google Scholar 

  • Bini, L. M., J. G. Tundisi, T. Matsumura-Tundisi & C. E. Matheus, 1997. Spatial variation of zooplankton groups in a tropical reservoir (Broa Reservoir, Sã o Paulo State-Brazil) Hydrobiologia 357: 89–98.

    Google Scholar 

  • Bonecker, C.C., F.A. Lansac-Tô ha, L.F.M. Velho & D.C. Rossa, 2001. The temporal distribution pattern of copepods in Corumbá Reservoir, state of Goiás, Brazil. Hydrobiologia 453/454: 375–384 (this volume).

    Google Scholar 

  • De Lafontaine, Y., 1994. Zooplankton biomass in the southern Gulf of St. Lawrence: spatial patterns and the influence of freshwater runoff. Can. J. Fish. aquat. Sci. 55: 617–635.

    Google Scholar 

  • Dussart, B. H. & S. M. Frutos, 1986. Sur quelques copépodes d'Argentine. 2. Copépodes du Paraná Médio. Rev. Hydrobiol. Trop. 19: 241–262.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohmstad, 1978. Methods for physical and chemical analysis of fresh waters. Blackwell Scientific, Oxford: 214 pp.

    Google Scholar 

  • Jackson, R. B., 1993. Stopping rules in principal components analysis: a comparison of heuristial approaches. Ecology 74: 2204–2214.

    Google Scholar 

  • Krebs, C. J., 1999. Ecological methodology. Benjamin / Cummings, California: 620 pp.

    Google Scholar 

  • Legendre, P. & M. Troussellier, 1988. Aquatic heterotrophic bacteria: Modeling in the presence of spatial autocorrelation. Limnol. Oceanogr. 33: 1055–1067.

    Google Scholar 

  • Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial experiments. Ecol. Monogr. 69: 1–24.

    Google Scholar 

  • Mackereth, F. Y. H., J. Heron & J. J. Talling, 1978. Water analysis: Some revised methods for limnologists. Freshwat. Biol. Ass. 36: 1–120.

    Google Scholar 

  • Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.

    Google Scholar 

  • Marzolf, G. R., 1990. Reservoirs as environments for zooplankton. In Thornton, K.W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. John Wiley & Sons, New York: 195–208.

    Google Scholar 

  • Pillar, V. D., 1999. The bootstrapped ordination reexamined. J. Veg. Sci. 10: 895–902.

    Google Scholar 

  • Pinel-Alloul, B., 1995. Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 300/301: 17–42.

    Google Scholar 

  • Pinel-Alloul, B. & D. Pont, 1991. Spatial distribution patterns in freshwater macrozooplankton: variation with scale. Can. J. Zool. 69: 1557–1570.

    Google Scholar 

  • Pinel-Alloul, B., T. Niyonsenga & P. Legendre, 1995. Spatial variation and environmental components of freshwater zooplankton structure. Ecoscience 2: 1–19.

    Google Scholar 

  • Reid, J. W., 1985. Chave de identificaç ã o e lista de referê ncias bibliográficas para as espécies continentais sulamericanas de vida livre da Ordem Cyclopoida (Crustacea, Copepoda). Bolm Zool., Sã o Paulo, 9:17: 143.

    Google Scholar 

  • Sendacz, S. & E. Kubo, 1982. Copepoda (Calanoida e Cyclopoida) de reservató rios do Estado de Sã o Paulo. Bol. Inst. Pesca. 9: 51–89.

    Google Scholar 

  • Smouse, P. E., J. C. Long & R. R Sokal, 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 35: 627–632.

    Google Scholar 

  • Teixeira, C., J. G. Tundisi & M. B. Kutner, 1965. Plankton studies in a mangrove environment. II: The standing-stock and some ecological factors. Bol. Inst. Oceanogr. 24: 23–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velho, L.F.M., Lansac-Tôha, F.A., Bonecker, C.C. et al. The longitudinal distribution of copepods in Corumbá Reservoir, State of Goiás, Brazil. Hydrobiologia 453, 385–391 (2001). https://doi.org/10.1023/A:1013194118104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013194118104

Navigation