Skip to main content
Log in

The Validation of the Finite Difference Method and Reciprocity for Solving the Inverse Problem in EEG Dipole Source Analysis

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The performance of the finite difference reciprocity method (FDRM) to solve the inverse problem in EEG dipole source analysis is investigated in the analytically solvable three-shell spherical head model for a large set of test dipoles. The location error for a grid with 2 mm and 3 mm node spacing is in general, not larger than twice the internode distance, hence 4 mm and 6 mm, respectively. Increasing the number of scalp electrodes from 27 to 44 only marginally improves the location error. The orientation error is always smaller than 4° for all the test dipoles considered. We have also compared the sensitivity to noise using FDRM in EEG dipole source analysis with the sensitivity to noise using the analytical expression for the forward problem. FDRM is not more sensitive to noise than the method using the analytical expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Awada, K.A., Jackson, D.R., Baumann, S.B., Williams, J.T., Wilton, D.R., Fink, P. and Prasky, B. Effects of conductivity un-certainties and modeling errors on EEG source localization using a 2-D model. IEEE Transactions on Biomedical Engineering, 1998, 45(9): 1135-1145.

    PubMed  Google Scholar 

  • Awada, K.A., Jackson, D.R., Williams, J.T., Wilton, D.R., Baumann, S.B. and Papanicolaou, A.C. Computational aspects of finite element modeling in EEG source localization. IEEE Transactions on Biomedical Engineering, 1997, 44(8): 736-752.

    PubMed  Google Scholar 

  • Boon, P. and D'Havé, M. Interictal and ictal dipole modelling in patients with refractory partial epilepsy. Acta Neurologica Scandinavia, 1995, 92: 7-18.

    Google Scholar 

  • Boon, P., D'Havé, M., Vonck, K., Baulac, M., Vanderkerckhove, T. and De Reuck, J. Dipole modeling in epilepsy surgery candidates. Epilepsia, 1996, 38(2): 208-218.

    Google Scholar 

  • Buchner, H., Knoll, G., Fuchs, M., Rienäcker, A., Beckmann, R., Wagner, M., Silny, J. and Pesch, J. Inverse localization of electric dipole current sources in finite element models of the human head. Electroencephalography and Clinical Neurophysiology, 1997, 102(4): 267-278.

    PubMed  Google Scholar 

  • Datta, B.N. Numerical Linear Algebra and Applications. Brooks/Cole Publishing Company, 1995.

  • Ebersole, J.S. and Wade, P.B. Spike voltage topography and equivalent dipole localization in complex partial epilepsy. Brain Topography, 1990, 3(1): 21-34.

    PubMed  Google Scholar 

  • Fuchs, M., Drenckhahn, R., Wischmann, H.-A. and Wagner, M. An improved boundary element method for realistic volume-conductor modeling. IEEE Transactions on Biomedi-cal Engineering, 1998, 45(8): 980-997.

    Google Scholar 

  • Hoekema, R., Venner, K., Struijk, J.J. and Holsheimer, J. Multigrid solution of the potential field in modeling electrical nerve stimulation. Computers and Biomedical Research, 1998, 31: 348-362.

    PubMed  Google Scholar 

  • Jasper, H. Report of committee on methods of clinical exam in EEG. Electroencephalography and Clinical Neurophysiology, 1958, 10: 370-375.

    Google Scholar 

  • Laarne, P.H.E., Hyttinen, J., Suihko, V. and Malmivuo, J. Validation of a detailed computer model for the electric fields in the brain. Journal of Medical Engineering and Technology, 1995, 19(2-3): 84-87.

    PubMed  Google Scholar 

  • Laarne, P., Hyttinen, J., Dodel, S., Malmivuo, J. and Eskola, H. Accuracy of two dipolar inverse algorithms applying reciprocity for forward calculation. Computers and Biomedical Research, 2000a, 33(3): 172-185.

    PubMed  Google Scholar 

  • Laarne, P., Tenhunen-Eskelinen, M.J.H. and Eskola, H. Effect of EEG electrodes density on dipole localization accuracy using two realistically shaped skull resistivity models. Brain Topography, 2000b, 12(4): 249-254.

    PubMed  Google Scholar 

  • Leahy, R.M., Mosher, J.C., Spencer, M.C., Huang, M.X. and Lewine, J.D. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalography and Clinical Neurophysiology, 1998, 107(2): 159-173.

    PubMed  Google Scholar 

  • Lemieux, L., McBride, A. and Hand, J.W. Calculation of electrical potentials on the surface of a realistic head model by finite differences. Phys. Med. Biol., 1996, 41: 1079-1091.

    PubMed  Google Scholar 

  • Lopes da Silva, F. Event-related potentials: Methodology and quantification. In: E. Niedermeyer and F. Lopes da Silva (Eds.), Electroencephalography, Basic Principles, Clinical Applications and Related Fields. Urban and Schwarzenberg, 1987, 46 (2nd edition): 763-772.

  • Malmivuo, J. and Plonsey, R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York, 1995.

    Google Scholar 

  • Marino, F., Halgren, E., Badier, J.-M., Gee, M. and Nenev, V. A finite difference model of electric field propagation in the human head: Implementation and validation. In: Proceedings of the 19th Annual Northeast Bioengineering Conference, 1993: 82-85.

  • Meijs, J.W.H., Weier, O.W., Peters, M.J. and Oosterom, A. On the numerical accuracy of the boundary element method. IEEE Transactions on Biomedical Engineering, 1989, 36(10): 1038-1049.

    PubMed  Google Scholar 

  • Mitchell, A. and Griffiths, D. The finite difference method in partial differential equations. John Willey and Sons, 1980.

  • Mosher, J.C., Spencer, M.E., Leahy, R.M. and Lewis, P.S. Error bounds for EEG and MEG dipole source localization. Electroencephalography and Clinical Neurophysiology, 1993, 86: 303-321.

    PubMed  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. Numerical recipes in C. Cambridge University Press, 1995.

  • Saleheen, H.I. and Ng, K.T. New finite difference formulations for general inhomogeneous anisotropic bioelectric problems. IEEE Transactions on Biomedical Engineering, 1997, 44(9): 800-809.

    PubMed  Google Scholar 

  • Salu, Y., Cohen, L.G., Rose, D., Sato, S., Kufta, C. and Hallett, M. An improved method for localizing electric brain dipoles. IEEE Transactions on Biomedical Engineering, 1990, 37(7): 699-705.

    PubMed  Google Scholar 

  • Schaul, N. The fundamental neural mechanisms of electroencephalography. Electroencephalography and Clinical Neurophysiology, 1998, 106: 101-107.

    PubMed  Google Scholar 

  • Vanrumste, B., Van Hoey, G., Boon, P., D'Havé, M. and Lemahieu, I. Inverse calculations in EEG source analysis applying the finite difference method, reciprocity and lead fields. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998: 2112-2115.

  • Vanrumste, B., Van Hoey, G., Van de Walle, R., D'Havé, M., Lemahieu, I. and Boon, P. Dipole localization errors in electroencephalogram source analysis due to volume conductor model errors. Med. Biol. Eng. Comput., 2000, 38(5): 528-534.

    PubMed  Google Scholar 

  • Weinstein, D., Zhukov, L. and Johnson, C. Lead-field bases for electroencephalography source imaging. Annals of biomedical engineering, 2000, 28: 1059-1065.

    PubMed  Google Scholar 

  • Witwer, J.G., Trezek, G.J. and Jewett, D.L. The effect of media inhomogeneities upon intracranial electrical fields. IEEE Transactions on Biomedical Engineering, 1972, BME-19(5): 352-362.

    PubMed  Google Scholar 

  • Yan, Y., Nunez, P. and Hart, R. Finite element model of the human head: scalp potentials due to dipole sources. Med. Biol. Eng. Comput., 1991, 29: 475-481.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanrumste, B., Van Hoey, G., Van de Walle, R. et al. The Validation of the Finite Difference Method and Reciprocity for Solving the Inverse Problem in EEG Dipole Source Analysis. Brain Topogr 14, 83–92 (2001). https://doi.org/10.1023/A:1012909511833

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012909511833

Navigation