Skip to main content
Log in

Cytogenetic comparison between Vietnamese sika deer and cattle: R-banded karyotypes and FISH mapping

  • Published:
Chromosome Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

R-banded chromosomes of Vietnamese sika (VS) deer (Cervus nippon pseudaxis, 2N = 66), a threatened subspecies of sika deer endemic to Vietnam, are presented for the first time and were compared with bovine R-banded chromosomes to define a standard karyotype. Nineteen VS deer autosomes (CNP) were identified on the basis of the banding pattern relative to bovine chromosomes (BTA), while hypotheses for the remaining thirteen were proposed from comparisons with the published deer genetic map, BTA 1, 2, 5, 6, 8 and 9 each equivalent to two separate acrocentric CNP chromosomes and BTA 26 and 28 associated in a tandem fusion. To confirm these hypotheses, probes for the twenty-nine Texas nomenclature type I markers specific for each cattle autosome, sixteen other type I and fourteen microsatellite markers were used in FISH experiments on VS deer chromosomes. CNP7 presented the most complex rearrangement as compared with cattle chromosomes. A complete correspondence between VS deer and cattle chromosomes was established and it was extended with a comparison with the human karyotype to transfer human map information to this species of scientific and economic interest. Moreover, this work anchors the deer genetic linkage map to chromosome-specific markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carrel A (1912) On the permanent life of tissues outside of the organisms. Exp Med 15: 516.

    Article  Google Scholar 

  • Chowdhary BP, Raudsepp T, Fronicke L, Scherthan H (1998) Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res 8: 577–589.

    PubMed  CAS  Google Scholar 

  • Cronin MA, Stuart R, Pierson BJ, Patton JC (1996) K-casein gene phylogeny of higher ruminants (Pecora, Artiodactyla). Mol Phylogenet Evol 6: 295–311.

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J (1983) The ancestral karyotype of carnivora: comparison with that of platyrrhine monkeys. Cytogenet Cell Genet 35: 200–208.

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J, Muleris M, Lombard M, Chauvier G (1982) Chromosomal phylogeny of forty-two species or subspecies of cercopithecoids (Primates Catarrhini). Ann Genet 25: 96–109.

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J, Viegas-Péquignot E (1986) Evolution chromosomique des Platyrrhiniens. Mammalia 50: 56–81.

    Google Scholar 

  • Eggen A, Gautier M, Billaut A et al. (2001) Construction and characterization of a bovine BAC library with four genome-equivalent coverage. Genet Sel Evol 33 (in press).

  • Fontana F, Rubini M (1990) Chromosomal evolution in Cervidae. Biosystems 24: 157–174.

    Article  PubMed  CAS  Google Scholar 

  • Frönicke L, Muller-Navia J, Romanakis K, Scherthan H (1997) Chromosomal homeologies between human, harbor scal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH. Chromosoma 106: 108–113.

    Article  PubMed  Google Scholar 

  • Gallagher DS Jr, Womack JE (1992) Chromosome conservation in the Bovidae. J Hered 83: 287–298.

    PubMed  Google Scholar 

  • Gallagher DS Jr, Davis SK, De Donato M et al. (1999) A molecular cytogenetic analysis of the tribe Bovini (Artiodactyla: Bovidae: Bovinae) with an emphasis on sex chromosome morphology and NOR distribution. Chromosome Res 7: 481–492.

    Article  PubMed  CAS  Google Scholar 

  • Gautier M, Laurent P, Hayes H, Eggen A (2001) Development and assignment of bovine-specific PCR systems for Texas nomenclature marker genes and isolation of homologous BAC probes. Genet Sel Evol 33: 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Grubb P (1993) Artiodactyle: Cervinae. In: Wilson DE, Reeder DM eds. Mammal Species of the World. A Taxonomic and Geographic Reference. Washington DC: Smithsonian Institution Press, pp 384–392.

    Google Scholar 

  • Gustavsson I, Sundt CO (1968) Karyotypes in five species of deer (Alces alces L., Capreolus capreolus L., Cervus elaphus L., Cervus nippon nippon Temm. and Dama dama L.). Hereditas 60: 233–248.

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson I, Sundt CO (1969) Three polymorphic chromosome systems of centric fusion type in a population of Manchurian sika deer (Cervus nippon hortulorum Swinhoe). Chromosoma 28: 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Hayes H (1995) Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution of conserved segments in bovine chromosomes. Cytogenet Cell Genet 71: 168–174.

    PubMed  CAS  Google Scholar 

  • Hayes H, Petit E, Dutrillaux B (1991) Comparison of RBG-banded karyotypes of cattle, sheep, and goats. Cytogenet Cell Genet 57: 51–55.

    PubMed  CAS  Google Scholar 

  • Hayes H, Petit E, Lemieux N, Dutrillaux B (1992) Chromosomal localization of the ovine beta-casein gene by non-isotopic in situ hybridization and R-banding. Cytogenet Cell Genet 61: 286–288.

    Article  PubMed  CAS  Google Scholar 

  • Hayes H, Di Meo GP, Gautier M, Laurent P, Eggen A, Iannuzzi L (2000) Localization by FISH of the 31 Texas nomenclature type I markers to both Q-and R-banded bovine chromosomes. Cytogenet Cell Genet 90: 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Herzog S (1987) Mechanisms of karyotype evolution in Cervus nippon Temminck. Caryologia 40: 347–353.

    Google Scholar 

  • Herzog S, Harrington R (1991) The role of hybridisation in karyotype evolution of deer (Cervidae; Artiodactyla; Mammalia). Theor Appl Genet 82: 425–429.

    Article  Google Scholar 

  • ISCNDB 2000 Di Berardino D, Di Meo GP, Gallagher DS, Hayes H, Iannuzzi L (corrdinator) eds. (2001) International System for Chromosome Nomenclature of Domestic Bovids. Cytogenet Cell Genet 92: 283–299.

  • Mayr B, Kalat M (1989) Chromosome banding and NORs in Cervus nippon hortulorum (Swinhoe). Caryologia 42: 243–248.

    Google Scholar 

  • Müller S, Stanyon R, O'Brien PC, Ferguson-Smith MA, Plesker R, Wienberg J (1999) Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 108: 393–400.

    Article  PubMed  Google Scholar 

  • Neitzel H (1987) Chromosome evolution of Cervidae: karyotypic and molecular aspects. In: Obe G, Basler A eds. Cytogenetics. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, pp. 90–112.

    Google Scholar 

  • Polziehn RO, Strobeck C (1998) Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA. Mol Phylogenet Evol 10: 249–258.

    Article  PubMed  CAS  Google Scholar 

  • Randi E, Mucci N, Claro-Hergueta F, Bonnet A, Douzery EJP (2001) A mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Animal Conser 4: 1–11.

    Article  Google Scholar 

  • Rettenberger G, Klett C, Zechner U et al. (1995) ZOO-FISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res 3: 479–486.

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Dutrillaux B (1998) Origin of human chromosome 21 and its consequences: a 50-million-year old story. Chromosome Res 6: 263–268.

    Article  PubMed  CAS  Google Scholar 

  • Schibler L, Vaiman D, Oustry A, Giraud-Delville C, Cribiu E (1998) Comparative gene mapping: a fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res 8: 901–915.

    PubMed  CAS  Google Scholar 

  • Van Stijn TC, Anderson RM, Maqboll N et al. (2000) A comparative ruminant genetic linkage map based on the deer interspecies hybrid pedigree. Presented at The 27th International Conference of Animal Genetics, pp. 11.

  • Van Tuinen P, Robinson TJ, Feldhamer GA (1983) Chromosome banding and NOR location in sika deer. J Hered 74: 473–474.

    Google Scholar 

  • Viegas-Péquignot E, Dutrillaux B (1978) Une méthode simple pour obtenir des prophases et des prométaphases. Ann Genet 21: 122–125.

    Google Scholar 

  • Wang Z, Du DR (1982) Karyotype of four species of deer. Acta Zool Sin 28: 35–45.

    Google Scholar 

  • Wang Z, Du DR (1983) Karyotypes of Cervidae and their evolution. Acta Zool Sin 29: 35–40.

    Google Scholar 

  • Wang Z, Du DR (1988) The Karyotypes and Chromosomal Evolution of Deer. Beijing: Science Press, p 163.

    Google Scholar 

  • Whitehead GK (1993) The Whitehead Encyclopedia of Deer. Whitehead: Swan-Hill Press, pp 1–597.

    Google Scholar 

  • Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103: 642–652.

    PubMed  CAS  Google Scholar 

  • Yang F, O'Brien PC, Wienberg J, Ferguson-Smith MA (1997) A reappraisal of the tandem fusion theory of karyotype evolution in Indian muntjac using chromosome painting. Chromosome Res 5: 109–117.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnet, A., Thévenon, S., Claro, F. et al. Cytogenetic comparison between Vietnamese sika deer and cattle: R-banded karyotypes and FISH mapping. Chromosome Res 9, 673–687 (2001). https://doi.org/10.1023/A:1012908508488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012908508488

Navigation