Skip to main content
Log in

A multiple objective grouping genetic algorithm for assembly line design

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to describe some of the main problems concerning assembly line design. The focus will be on the following steps: (1) the input data preparation, (2) the elaboration of the logical layout of the line, which consists in the distribution of operations among stations along the line and an assignment of resources to the different stations, (3) finally the mapping phase using a simulation package to check the obtained results. This work presents a new method to tackle the hybrid assembly line design, dealing with multiple objectives. The goal is to minimize the total cost of the line by integrating design (station space, cost, etc.) and operation issues (cycle time, precedence constraints, availability, etc.). This paper also presents in detail a very promising approach to solve multiple objective problems. It is a multiple objective grouping genetic algorithm hybridized with the multicriteria decision-aid method PROMETHEE II. An approach to deal with user's preferences in design problems is also introduced. The essential concepts adopted by the method are described and its application to an industrial case study is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baybars, I. (1986) A survey of exact algorithms for the simple assembly line balancing. Management Science, 32, 909-932.

    Google Scholar 

  • Boothroyd, G. and Dewhurst, P. (1991) Product Design for Assembly, Boothroyd Dewhurst, Inc., Wakefield, Rhode Island.

    Google Scholar 

  • Brans, J.-P. and Mareschal, B. (1994) The PROMCALC & GAIA decision support system for multicriteria decision Aid. Decision Support Systems, 12, 297-310.

    Google Scholar 

  • Buckchin, J. and Tzur, M. (2000) Design of flexible assembly line to minimize equipment cost. To appear in the Transactions of IEE.

  • Chow, W.-M. (1990) Assembly Line Design: Methodology and Applications, Marcel Dekker, Inc., New York, NY.

    Google Scholar 

  • Coello, C. A. C. (1999) A comprehensive survey of evolutionary-based multiobjective optimization. Knowledge and Information Systems, 1(3), 129-156.

    Google Scholar 

  • De Lit, P., Rekiek, B., Pellichero, F., Delchambre, A., Danloy, J., Petit, F., Leroy, A., Marée, J.-F., Spineux, A. and Raucent, B. (1999) A new philosophy of design of a product and its assembly line. Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning (ISATP99). Porto, Portugal, pp. 381-386.

  • Delchambre, A. (ed.) 1996, CAD Method for Industrial Assembly: Concurrent Design of Products, Equipment and Control Systems, John Wiley and Sons, Inc. Chichester, United Kingdom.

    Google Scholar 

  • Faaland, B. H., Klastorin, T. D., Schmitt, T. G. and Shtub, A. (1992) Assembly line balancing with resource dependent task times. Decision Sciences, 23, 1186-1192.

    Google Scholar 

  • Falkenauer, E. (1998) Genetic Algorithms and Grouping Problems, 1st edn, Chichester, U.K., John Wiley and Sons, Inc.

    Google Scholar 

  • Falkenauer, E. and Delchambre, A. (1995) Integrated assembly and resource planning in production line design. Proceedings of the International Symposyium on Assembly and Task Planning. Pittsburg, PA, pp. 220-225.

  • Fonseca, C. M. and Fleming, P. J. (1995) An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1), 1-16.

    Google Scholar 

  • Graves, S. C. and Holmes-Redfield, C. (1988) Equipment selection and task assignment for multiproduct assembly system design. International Journal of Flexible Manufacturing Systems, 1, 31-50.

    Google Scholar 

  • Graves, S. C. and Lamar, B. W. (1983) An integer programming procedure for assembly system design problems. Operations Research, 31(3), 522-545.

    Google Scholar 

  • Graves, S. C. and Whitney, D. E. (1979) A methematical programming procedure for equipment selection and system evaluation in programmable assembly. Proceedings of the Eighteenth IEEE Conference on Decision and Control, pp. 531-536.

  • Gustavson, R. E. (1986) Design for cost-effective assembly systems. Technical Report P-2661, C. S. Draper Laboratory, Cambridge, Massachusetts.

    Google Scholar 

  • Gutjahr, A. and Nemhauser, G. (1964) An algorithm for the line problem. Management Science, 11(2), 308-315.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.

    Google Scholar 

  • Lee, H. F. and Stecke, K. E. (1996) An integrated design support method for flexible assembly systems. Journal of Manufacturing Systems, 15(1), 13-32.

    Google Scholar 

  • Malakooti, B. and Kumar, A. (1996) A knowledge-based system for solving multi-objective assembly line-balancing problems. International Journal of Production Research, 34(9), 2533-2552.

    Google Scholar 

  • McMullen, P. R. and Frazier, G. V. (1998) Using simulated annealing to solve a multiobjective assembly line balancing problem with parallel workstations. International Journal of Production Research, 36(10), 2717-2741.

    Google Scholar 

  • Mînzu, V. and Henrioud, J.-M. (1997) Approche systématique de structuration en postes des systèmes d'assemblage monoproduits. RAIRO-APII-JESA, 31(1), 57-78.

    Google Scholar 

  • Nevins, J. L. and Whitney, D. E. (eds) (1989) Concurrent Design of Products and Processes, McGraw-Hill, Inc., New York, NY.

    Google Scholar 

  • Okano, A. (1993) Computer-aided assembly process planning withresource assignment. Proceedings of the International IEEE conference on Robotics and Automation, pp. 301-306.

  • Pellichero, F. (1999) Computer-aided choice of assembly methods and selection of equipment in production line design. Mémoire présenté en vue de l'obtention du grade de docteur en sciences appliquées, Department of Applied Mechanics, Université libre de Bruxelles, Brussels, Belgium.

    Google Scholar 

  • Pellichero, F., Rekiek, B., Falkenauer, E., De Lit, P. and Delchambre, A. (1999) Computer-aided selection of equipment and resource planning in assembly line design, in H. Van Brussel, J.-P. Kruth, and B. Lauwers (eds). Proceedings of the 32nd CIRP International Seminar on Manufacturing Systems, Leuven, Belgium, pp. 349-357.

  • Petit, F. (1999) Interactive design of a product and its assembly system. Thèse présentée en vue de l'obtention du grade de docteur en sciences appliquées, Université catholique de Louvain, Louvain-La-Neuve, Belgium.

    Google Scholar 

  • Pinnoi, A. and Wilhelm, W. E. (1998) Assembly system design: A branch and cut approach. Management Science, 44(1), 103-118.

    Google Scholar 

  • Pinto, P. A., Dannenbring, D. G. and Khumalawa, B. M. (1983) Assembly line balancing with processing alternatives: An applications. Management Science, 29(7), 817-830.

    Google Scholar 

  • Rekiek, B. (2000) Design of assembly lines. Mémoire présenté en vue de l'obtention du grade de docteur en sciences appliquées, Université libre de Bruxelles, Brussels, Belgium.

    Google Scholar 

  • Rekiek, B., De Lit, P., Pellichero, F., Falkenauer, E. and Delchambre, A. (1999), Applying the equal piles problem to balance assembly lines. Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning (ISATP99). Porto, Portugal, pp. 399-404.

  • Rubinovitz, J. and Buckchin, J. (1993) RALB—a heuristic algorithm for design and balancing of robotic assembly lines. Annals of the CIRP, 42, 497-500.

    Google Scholar 

  • Scholl, A. (1999) Balancing and Sequencing of Assembly Lines, Second edition, Physica, Heidelberg.

    Google Scholar 

  • Tsai, D. M. and Yao, M. J. (1993) A line-balanced-base capacity planning procedure for series-type robotic assembly line. International Journal of Production Research, 31, 1901-1920.

    Google Scholar 

  • Van Veldhuizen, D. A. (1999) Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Ph.D. thesis, Graduate School of Engineering. Air Force Institute of Technology, Ohio.

    Google Scholar 

  • Wanet, V. (1999) Développement d'une bibliothèque de simulations d'éléments d'une ligne d'assemblage'. Travail de fin d'études présenté en vue de l'obtention du grade d'ingénieur civil mécanicien, Université libre de Bruxelles, Brussels, Belgium.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rekiek, B., De Lit, P., Pellichero, F. et al. A multiple objective grouping genetic algorithm for assembly line design. Journal of Intelligent Manufacturing 12, 467–485 (2001). https://doi.org/10.1023/A:1012200403940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012200403940

Navigation