Skip to main content
Log in

Effect of p58GTA on β-1,4-galactosyltransferase 1 activity and cell-cycle in human hepatocarcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

β-1,4-galactosyltransferase 1 (β1,4-GT 1) is the key enzyme transferring galactose to the terminal N-acetylglucosamine (GlcNAc) forming Galβ1→4GlcNAc structure in the Golgi apparatus. In addition, it also serves as a cell adhesion molecule by recognizing and binding to terminal GlcNAc of glycoconjugates on the adjacent cell surface and matrix through a subpopulation of the enzyme distributed on the cell surface. Transient expression of the p58GTA protein kinase, which belongs to the p34cdc2-related supergene family, could enhance β1,4-GT 1 total activity in COS cells. In this study, the p58GTA interaction with β1,4-GT 1 was confirmed using an in vitro assay with the TNT® Coupled Reticulocyte Lysate System. An expression vector containing p58GTA was stably transfected into 7721 cells, a human hepatocarcinoma cell line, expression was confirmed by Northern and Western blot analyses. The cells transfected with p58GTA (p58GTA/7721) contained 1.9 times higher total β1,4-GT 1 activity and 2.6 times higher cell-surface β1,4-GT 1 activity than the mock transfected cells (pcDNA3/7721). However, Ricinus communis agglutinin-I lectin blot analysis revealed that the enhanced β1,4-GT 1 activity did not increase the Galβ1→4GlcNAc groups on most of the membrane proteins in p58GTA/7721 cells. By flow cytometry analysis, it was found that the p58GTA/7721 cells were G2/M phase arrested, compared with the pcDNA3/7721 cells. These results suggest that the p58GTA stable transfection into human hepatocarcinoma cells could enhance the two β1,4-GT 1 subcellular pool activities independently and change its cell-cycle without modifying the β-1,4-linked galactose residues on most membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanks SK, Quinn AM, Hunter T: The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52, 1988

    Article  CAS  PubMed  Google Scholar 

  2. Draetta G, Beach D: Activation of cdc2 protein kinase during mitosis in human cells: Cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54: 17–26, 1988

    Article  CAS  PubMed  Google Scholar 

  3. Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW: Cyclin activation of p34cdc2. Cell 63: 1013–1024, 1990

    Article  CAS  PubMed  Google Scholar 

  4. Sherr CJ: Mammalian G1 cyclins. Cell 73: 1059–1065, 1993

    Article  CAS  PubMed  Google Scholar 

  5. Bunnell BA, Heath LS, Adams DE, Lahti JM, Kidd VJ: Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle. Proc Natl Acad Sci USA 87: 7467–7471, 1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiang J, Lahti JM, Grenet J, Easton J, Kidd VJ: Molecular cloning and expression of alternatively spliced PITSLRE protein kinase isoforms. J Biol Chem 269: 15786–15794, 1994

    CAS  PubMed  Google Scholar 

  7. Lahti JM, Xiang J, Kidd VJ: The PITSLRE protein kinase family. Prog Cell Cycle Res 1: 329–338, 1995

    Article  CAS  PubMed  Google Scholar 

  8. Lahti JM, Xiang J, Heath LS, Campana D, Kidd VJ: PITSLRE protein kinase activity is associated with apoptosis. Mol Cell Biol 15: 1–11, 1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ariza ME, Broome-Powell M, Lahti JM, Kidd VJ, Nelson MA: Fasinduced apoptosis in human malignant melanoma cell lines is associated with the activation of the p34(cdc2)-related PITSLRE protein kinases. J Biol Chem 274: 28505–28513, 1999

    Article  CAS  PubMed  Google Scholar 

  10. Dave BJ, Pickering DL, Hess MM, Weisenburger DD, Armitage JO, Sanger WG: Deletion of cell division cycle 2-like 1 gene locus on 1p36 in non-Hodgkin lymphoma. Cancer Genet Cytogenet 108: 120–126, 1999

    Article  CAS  PubMed  Google Scholar 

  11. Nelson MA, Ariza ME, Yang JM, Thompson FH, Taetle R, Trent JM, Wymer J, Massey-Brown K, Broome-Powell M, Easton J, Lahti JM, Kidd VJ: Abnormalities in the p34cdc2-related PITSLRE protein kinase gene complex (CDC2L) on chromosome band 1p36 in melanoma. Cancer Genet Cytogenet 108: 91–99, 1999

    Article  CAS  PubMed  Google Scholar 

  12. Bunnell B, Fillmore H, Gregory P, Kidd VJ: A dominant negative mutation in two proteins created by ectopic expression of an AU-rich 3' untranslated region. Somat Cell Mol Genet 16: 151–162, 1990

    Article  CAS  PubMed  Google Scholar 

  13. Bunnell BA, Adams DE, Kidd VJ: Transient expression of a p58 protein kinase cDNA enhances mammalian glycosyltransferase activity. Biochem Biophys Res Commun 171: 196–203, 1990

    Article  CAS  PubMed  Google Scholar 

  14. Shur BD, Evans S, Lu Q: Cell surface galactosyltransferase: Current issues. Glycocon J 15: 537–548, 1998

    Article  CAS  Google Scholar 

  15. Roseman S: The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids 5: 270–297, 1970

    Article  CAS  PubMed  Google Scholar 

  16. Furukawa K, Sato T: Beta-1,4-galactosylation of N-glycans is a complex process. Biochem Biophy Acta 1473: 54–66, 1999

    Article  CAS  Google Scholar 

  17. Begovac PC, Hall DE, Shur BD: Laminin fragment E8 mediates PC12 cell neurite outgrowth by binding to cell surface beta 1,4 galactosyltransferase. J Cell Biol 113: 637–644, 1991

    Article  CAS  PubMed  Google Scholar 

  18. Gong X, Dubois DH, Miller DJ, Shur BD: Activation of a G protein complex by aggregation of beta-1,4-galactosyltransferase on the surface of sperm. Science 269: 1718–1721, 1995

    Article  CAS  PubMed  Google Scholar 

  19. Maillet CM, Shur BD: Perturbing cell surface beta-(1,4)-galactosyltransferase on F9 embryonal carcinoma cells arrests cell growth and induces laminin synthesis. J Cell Sci 107: 1713–1724, 1994

    CAS  PubMed  Google Scholar 

  20. Hinton DA, Evans SC, Shur, BD: Altering the expression of cell surface beta 1,4-galactosyltransferase modulates cell growth. Exp Cell Res 219: 640–649, 1995

    Article  CAS  PubMed  Google Scholar 

  21. Purushotham KR, Dunn WA, Schneyer CA, Humphreys-Beher MG: A novel mechanism for isoprenaline-stimulated proliferation of rat parotid acinar cells involving the epidermal growth factor receptor and cell surface galactosyltransferase. Biochem J 284: 767–776, 1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Appeddu PA, Shur BD: Molecular analysis of cell surface beta-1,4-galactosyltransferase function during cell migration. Proc Natl Acad Sci USA 91: 2095–2099, 1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, Iwakura Y: Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J: 16, 1850–1857, 1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu Q, Hasty P, Shur BD: Targeted mutation in beta1,4-galactosyltransferase leads to pituitary insufficiency and neonatal lethality. Dev Biol 181: 257–267, 1997

    Article  CAS  PubMed  Google Scholar 

  25. Zhang SW, Lin WS, Ying XL, Zhu D, Guo MY, Gu JX: Effect of suppression of TGF-beta1 expression on cell-cycle and gene expression of beta-1,4-galactosyltransferase 1 in human hepatocarcinoma cells. Biochem Biophys Res Commun 273: 833–838, 2000

    Article  CAS  PubMed  Google Scholar 

  26. Kijimoto-Ochiai S, Hatae T, Katagiri YU, Okuyama H: Microheterogeneity and oligosaccharide chains on the beta chains of HLA-DR, human major histocompatibility complex class II antigen, analyzed by the lectin-nitrocellulose sheet method. J Biochem 106: 771–777, 1989

    CAS  PubMed  Google Scholar 

  27. Zhou DP, Jiang SM, Shen ZH, Gu JX: Effect of all-trans-retinoid acid and phorbol 12-myristate 13-acetate on the activity of human hepatocellular carcinoma cell-surface β1, 4-galactosyl-transferase. Biochem J 320: 623–625, 1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Humphreys-Beher MG, Bunnell B, van Tuinen P, Ledbetter D, Kidd VJ: Molecular cloning and chromosomal localization of human 4-beta-galactosyltransferase. Proc Natl Acad Sci USA 83: 8918–1922, 1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Humphreys-Beher MG: Isolation and characterization of UDP-galactose: N-acetylglucosamine 4 beta-galactosyltransferase activity induced in rat parotid glands treated with isoproterenol. J Biol Chem 259: 5797–5802, 1984

    CAS  PubMed  Google Scholar 

  30. Lopez LC, Maillet CM, Oleszkowicz K, Shur BD: Cell surface and Golgi pools of beta-1,4-galactosyltransferase are differentially regulated during embryonal carcinoma cell differentiation. Mol Cell Biol 9: 2370–2377, 1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marchase RB, Kidd VJ, Rivera AA, Humphreys-Beher MG: Cell surface expression of 4 beta-galactosyltransferase accompanies rat parotid gland acinar cell transition to growth. J Cell Biochem 36: 453–465, 1988

    Article  CAS  PubMed  Google Scholar 

  32. Cornelis S, Bruynooghe Y, Denecker G, Van Huffel S, Tinton S, Beyaert R: Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5: 597–605, 2000

    Article  CAS  PubMed  Google Scholar 

  33. Kraft AS, Wang SS, Xiang J, Pouncey L, Kidd VJ: Regulation of the p58GTA cell division control-related protein kinase during phorbol 12-myristate 13-acetate-induced terminal differentiation of U937 cells. Oncogene 7: 501–506, 1992

    CAS  PubMed  Google Scholar 

  34. Wassler MJ, Shur BD: Clustering of cell surface (beta)1,4-galactosyltransferase I induces transient tyrosine phosphorylation of focal adhesion kinase and loss of stress fibers. J Cell Sci 113: 237–245, 2000

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian X. Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.W., Xu, S.L., Cai, M.M. et al. Effect of p58GTA on β-1,4-galactosyltransferase 1 activity and cell-cycle in human hepatocarcinoma cells. Mol Cell Biochem 221, 161–168 (2001). https://doi.org/10.1023/A:1010932211745

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010932211745

Navigation