Skip to main content
Log in

Selective quenching of the fluorescence of core chlorophyll–protein complexes by photochemistry indicates that Photosystem II is partly diffusion limited

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The spectral characteristics of fluorescence quenching by open reaction centres in isolated Photosystem II membranes were determined with very high resolution and analysed. Quenching due to photochemistry is maximal near 687 nm, minimal in the chlorophyll b emission interval and displays a distinctive structure around 670 nm. The amplitude of this `quenching hole' is about 0.03 for normalised spectra. On the basis of the absorption spectra of isolated chlorophyll–protein complexes, it is shown that these quenching structures can be exactly described by assuming that photochemistry lowers the fluorescence yield of the reaction centre complex (D1/D2/cytb 559) plus CP47, with quenching of the former complex being approximately double that of the latter complex. These data, which qualitatively indicate that there are kinetically limiting processes for primary photochemistry in the antenna, have been analysed by means of several different kinetic models. These models are derived from present structural knowledge of the arrangement of the chlorophyll–protein complexes in Photosystem II and incorporate the reversible charge separation characteristic of the exciton/radical pair equilibration model. In this way it is shown that Photosystem II cannot be considered to be purely trap limited and that exciton migration in the antenna imposes a diffusion limitation of about 30%, irrespective of the structural model assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbato R, Friso G, Rigoni F, Dalla Vecchia F and Giacometti GM (1992) Structural changes and lateral redistribution of Photosystem II during donor side photoinhibition of thylakoids. J Cell Biol 119: 325-335

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Nield J, Morris EP and Hankamer B (1999) Subunit positioning in photosystem II revisited. TIBS 24: 43-45

    PubMed  CAS  Google Scholar 

  • Berthold DA, Babcock GT and Yocum CF (1981) A highly resolved oxygen evolving Photosystem II preparation from spinach thylacoid membranes. EPR and electron transport properties. FEBS Lett 134: 231-234

    Article  CAS  Google Scholar 

  • Bittner T, Wiederrecht GP, Irrgang KD, Renger G and Wasielewski MR (1995) Femtosecond transient absorption spectroscopy on the light harvesting chlorophyll a/b protein complex of Photosystem II at room temperature and 12 K. Chem Phys 194: 311-322

    Article  CAS  Google Scholar 

  • Bockema EJ, Van Roon H, Calkoen F, Bassi R and Dekker JP (1999) Multiple types of association of Photosystem II and its light-harvesting antenna in partially solubilized Photosystem II membranes. Biochemistry 38: 2233-2239

    Article  Google Scholar 

  • Briantais JM, Dacosta J, Goulas Y, Ducruet JM and Moya I (1996) Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, Fo. A time-resolved analysis. Photosynth Res 48: 189-196

    Article  CAS  Google Scholar 

  • Cattanco R, Zucchelli G, Garlaschi FM, Finzi L and Jennings RC (1995) A thermal broadening analysis of absorption spectra of the D1/D2/cytb 559 complex in terms of gaussian decomposition sub-bands. Biochemistry 34: 15267-15275

    Article  Google Scholar 

  • Chapman DJ, Gounaris K and Barber J (1988) Electron-transport properties of the isolated D1/D2/cytb 559 Photosystem II reaction centre. Biochim Biophys Acta 933: 423-431

    Article  CAS  Google Scholar 

  • Connelly JP, Muller MG, Hucke M, Gatzen G, Mullineaux CW, Ruban AV, Horton P and Holzwarth AR (1997) Ultrafast spectroscopy of trimeric light-harvesting complex II from higher plants. J Phys Chem B 101: 1902-1909

    Article  CAS  Google Scholar 

  • Croce R, Zucchelli G, Garlaschi FM, Bassi R and Jennings RC (1996) Excited state equilibration in the Photosystem I-light-harvesting complex: P700 is almost isoenergetic with its antenna. Biochemistry 35: 8572-8579

    Article  PubMed  CAS  Google Scholar 

  • Dainese P, Santini C, Ghiretti Magaldi A, Marquardt J, Tidu V, Mauro S, Bergantino E and Bassi R (1992) The organization of pigment-proteins within Photosystem II. In: Murata N (ed) Research in Photosynthesis, Vol 2, pp 13-20. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable Photosystem II fluorescence. Photochem Photobiol 60: 1-23

    Article  CAS  Google Scholar 

  • Dau H and Sauer K (1996) Exciton equilibration and Photosystem II exciton dynamics. A fluorescence study on Photosystem II membrane particles of spinach. Biochim Biophys Acta 1273: 175-190

    Article  Google Scholar 

  • Dekker JP, Betts SD, Yocum CF and Boekema EJ (1990) Characterization by electron microscopy of isolated particles and two-dimensional crystals of the CP47-D1-D2-Cytochrome b-559 complex of Photosystem II. Biochemistry 29: 3220-3225

    Article  PubMed  CAS  Google Scholar 

  • Donovan B, Walker LA, Kaplan D, Bouvier M, Yocum CF and Sension RJ (1997) Structure and function in the isolated reaction center complex of Photosystem II. 1. Ultrafast fluorescence measurements of PS II. J Phys Chem B 101: 5232-5238

    Article  CAS  Google Scholar 

  • Gilmore AM, Hazlett TL, Debrunner PG and Govindjee (1996) Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences between barley wild-type and chlorina mutants. Photochemical quenching and xanthophyll cycle-dependent non-photochemical quenching of fluorescence. Photosynth Res 48: 171-187

    Article  CAS  Google Scholar 

  • Gradinaru CC, Pascal AA, Van Mourik F, Robert B, Horton P, Van Grondelle R and van Amerongen H (1998) Ultrafast evolution of the excited states in the chlorophyll a/b complex CP29 from green plants studied by energy-selective pump-probe spectroscopy. Biochemistry 37: 1143-1149

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Barber J and Boekema EJ (1997) Structure and membrane organization of Photosystem II in green plants. Ann Rev Plant Physiol Plant Mol Biol 48: 641-671

    Article  CAS  Google Scholar 

  • Hankamer B, Morris EP and Barber J (1999) Revealing the structure of the oxigen-evolving core dimer of Photosystem II by cryoelectron crystallography. Nat Struct Biol 6: 560-564

    Article  PubMed  CAS  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b binding proteins. Biochim Biophys Acta 1184: 1-19

    Article  PubMed  CAS  Google Scholar 

  • Jennings RC, Zucchelli G and Garlaschi FM (1991) The influence of quenching by open reaction centres on the Photosystem II fluorescence emission spectrum. Biochim Biophys Acta 1060: 245-250

    CAS  Google Scholar 

  • Jennings RC, Bassi R, Garlaschi FM, Dainese P and Zucchelli G (1993) Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of Photosystem II antenna. Biochemistry 32: 3203-3210

    Article  PubMed  CAS  Google Scholar 

  • Jennings RC, Garlaschi FM, Finzi L and Zucchelli G (1994) Spectral heterogeneity and energy transfer in higher plant Photosystem II. Lith J Phys 34: 293-300

    CAS  Google Scholar 

  • Jennings RC, Bassi R and Zucchelli G (1996a) Antenna structure and energy transfer in higher plants photosystems. In: Mattay J (ed) Topics in Current Chemistry, 177: Electron Transfer II, pp 147-181. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Jennings RC, Zucchelli G, Finzi L and Garlaschi FM (1996b) Spectral heterogeneity and energy equilibration in higher plant photosystems. In: Jennings RC et al. (eds) Light as an Energy Source and Information Carrier in Plant Physiology, pp 65-74. Plenum Publishing Corporation, New York/London

    Google Scholar 

  • Ketskeméty I, Dombi J and Horvai R (1961) Fluoreszenzemission, absorption und temperaturstrahlung von lösungen. Ann Phys 8: 342-352

    Google Scholar 

  • Kudzmauskas S, Valkunas L and Borisov A-Y (1983) A theory of excitation transfer in photosynthetic units. J Theor Biol 105: 13-23

    Article  PubMed  CAS  Google Scholar 

  • Lukins PB and Oates T (1998) Single-molecule high-resolution structure and electron conduction of Photosystem II from scanning tunneling microscopy and spectroscopy. Biochim Biophys Acta 1409: 1-11

    Article  PubMed  CAS  Google Scholar 

  • Peter GF and Thornber JP (1991) Biochemical composition and organization of Photosystem II light-harvesting pigment-proteins. J Biol Chem 266: 16745-16754

    PubMed  CAS  Google Scholar 

  • Roelofs TA, Gilbert M, Shuvalov VA and Holzwarth AR (1991) Picosecond fluorescence kinetics of the D1/D2/cytb 559 Photosystem II reaction center complex. Energy transfer and primary charge separation processes. Biochim Biophys Acta 1060: 237-244

    CAS  Google Scholar 

  • Roelofs TA, Lee C-H and Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of primary processes in Photosystem II α-and β-units. Biophys J 61: 1147-1163

    CAS  PubMed  Google Scholar 

  • Schatz G, Brock H and Holzwarth AR (1988) Kinetic and energetic model for the primary processes in Photosystem II. Biophys J 54: 397-405

    Article  CAS  PubMed  Google Scholar 

  • Stepanov BI (1957) A universal relation between the absorption and luminescence spectra of complex molecules. Sov Phys Dokl 2: 81-84

    CAS  Google Scholar 

  • Trissl H-W (2000) Modeling the excitation energy capture in thylakoid membranes. In: Larkum AWD et al. (eds) Photosynthesis in Algae. Kluwer Academic Publishers, Dordrecht, The Netherlands (in press)

    Google Scholar 

  • Valkunas L (1986) Influence of structural heterogeneity on energy migration in photosynthesis. Laser Chemistry 6: 253-267

    CAS  Google Scholar 

  • Van Brederode M and Van Grondelle R (1999) New and unexpected routes for ultrafast electron transfer in photosynthetic reaction centers. FEBS Lett 455: 1-7

    Article  PubMed  CAS  Google Scholar 

  • Van Dorssen RJ, Plijter JJ, Dekker JP, Den Ouden A, Amesz J and Van Gorkom HJ (1987) Spectroscopic properties of chloroplast grana membranes and of the core of Photosystem II. Biochim Biophys Acta 890: 134-143

    Article  CAS  Google Scholar 

  • Van Grondelle R (1985) Excitation energy transfer, trapping and annhilation in photosynthetic systems. Biochim Biophys Acta 811: 147-195

    CAS  Google Scholar 

  • Vasilev S, Wiebe S and Bruce D (1998) Non-photochemical quenching of chlorophyll fluorescence in photosynthesis — 5-hydroxy-1,4-naphthoquinone in spinach thylakoids as a model for antenna based quenching mechanisms. Biochim Biophys Acta 1363: 147-156

    Article  CAS  Google Scholar 

  • Visser HM, Groot ML, Van Mourik F, Van Stokkum IHM, Dekker JP and Van Grondelle R (1995) Subpicosecond transient absorption difference spectroscopy on the reaction center of Photosystem II: Radical pair formation at 77 K. J Phys Chem 99: 15304-15309

    Article  CAS  Google Scholar 

  • Visser HM, Kleima FJ, Van Stokkum IHM, Van Grondelle R, Van Amerongen H (1996) Probing the many energy-transfer process in the photosynthetic light-harvesting complex II at 77 K using energy-selective sub-picosecond transient absorption spectroscopy. Chem Phys 210: 297-312

    Article  CAS  Google Scholar 

  • Wasielewski MR, Johnson DG, Seibert M and Govindjee (1989) Determination of the primary charge separation rate in isolated Photosystem II reaction centers with 500 fs time resolution. Proc Natl Acad Sci USA 86: 524-528

    Article  PubMed  CAS  Google Scholar 

  • Zheleva D, Sharma J, Panico M, Morris HR and Barber J (1998) Isolation and characterization of monomeric and dimeric CP47-reaction center Photosystem II complexes. J Biol Chem 273: 16122-16127

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Jennings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, R.C., Elli, G., Garlaschi, F.M. et al. Selective quenching of the fluorescence of core chlorophyll–protein complexes by photochemistry indicates that Photosystem II is partly diffusion limited. Photosynthesis Research 66, 225–233 (2000). https://doi.org/10.1023/A:1010618006889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010618006889

Keywords

Navigation