Skip to main content
Log in

Trophic capacity of Carlingford Lough for oyster culture – analysis by ecological modelling

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

A one-dimensional ecosystem box model is presented forcarrying capacity assessment. The model includesphysical and biological processes. The physicalprocesses are the transport of nutrients, suspendedmatter and phytoplankton through the system boundariesand between model boxes. The biological processes areprimary production and oyster (Crassostreagigas) population dynamics and physiology. The modelwas implemented using an object-oriented approach. Themodel was employed to estimate the carrying capacityof Carlingford Lough (Ireland) for oyster culture. Inthe Lough, low water temperatures prevent the oystersfrom reproducing. Therefore, recruitment ishuman-dependent. Small oyster spat is seeded everyyear during spring and harvested after the summer ofthe next year. During this period oysters reachcommercially harvestable weight. The results obtainedindicate that the carrying capacity of this system isapproximately 0.45 g oysters (AFDW) m-3,determined more by the availability of particulatematter than by phytoplankton. It is suggested that afive-fold increase in oyster seeding may optimiseharvest yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacher C (1989) Capacité trophique du bassin de Marennes-Oléron: couplage d'un modèle de transport particulaire et d'un modéle de croissance de l'huître Crassostrea gigas. Aquat Living Resour 2: 199–214

    Google Scholar 

  • Bacher C, Héral M, Deslous-Paoli and Razet D (1991) Modèle énergétique uniboite de la croissance des huîtres (Crassostrea gigas) dans le bassin de Marennes-Oléron. Can J Fish Aquat Sci 48: 391–404

    Google Scholar 

  • Ball B, Ferreira JG and Keegan B (1994) Development of a model to determine the trophic capacity of mollusc rearing areas in Ireland and Greece. Final Report to the CEC for project FAR-AQ2516

  • Baretta J and Ruardij P (eds) (1988) Tidal flat estuaries. Simulation and analysis of the Ems Estuary. Springer-Verlag, Berlin

    Google Scholar 

  • Bayne BL (1993) Feeding physiology of bivalves: Time dependence and compensation for changes in food availability. In: RF Dame (ed.). Bivalve filter feeders in estuarine and coastal ecossystem processes. (pp. 1–24) Springer-Verlag, Berlin

    Google Scholar 

  • Bernard FR (1974) Annual biodeposition and gross energy budget of mature pacific oysters, Crassostrea gigas. J. Fish Res Bd Can. 31: 185–190

    Google Scholar 

  • Brock TD (1981) Calculating solar radiation for ecological studies. Ecol Modelling 14: 1–9

    Article  Google Scholar 

  • Carver CEA and Mallet AL (1990) Estimating carrying capacity of a coastal inlet for mussel culture. Aquaculture 88: 39–53

    Article  Google Scholar 

  • Douglas DJ (1992) Environment and Mariculture (A study of Carlingford Lough). Ryland Research Ltd., Ireland

    Google Scholar 

  • Ferreira JG (1995) EcoWin — An Object-oriented Ecological Model for Aquatic Ecosystems. Ecol. Modelling 79: 21–34

    Article  Google Scholar 

  • Grillot N and Ferreira JG (1996). Ecological model of the Cala do Norte of the Tagus Estuary. ECOTEJO, Rel. A-8403-06-96-UNL, Ed. DCEA/FCT, New University of Lisbon

  • Heral M (1993) Why carrying capacity models are useful tools for management of bivalve molluscs culture. In: R.F. Dame (ed.). Bivalve filter feeders in estuarine and coastal ecossystem processes. (pp. 455–477) Springer-Verlag, Berlin

    Google Scholar 

  • Ittekot V, Brockmann U, Michaelis W and Degens ET (1981) Dissolved, free and combined carbon hydrates during a phytoplankton bloom in the Northern North Sea. Mar Ecol Progr Ser 4: 259–305

    Google Scholar 

  • Jørgensen SE, Nielsen S and Jørgensen L (1991) Handbook of Ecological Parameters and Ecotoxicology. Elsevier, Amsterdam

    Google Scholar 

  • Portela LI and Neves R (1994) Modelling temperature distribution in the shallow Tejo estuary. In: Tsakiris & Santos (ed). Advances in Water Resources Technology and Management. (pp. 457–463) Balkema, Rotterdam

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT and Flannery BP (1995) Numerical recipes in C — The art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Raillard O (1991) Etude des interactions entre les processus physiques et biologiques intervenant dans la production de l'huitre japonaise Crassostrea gigas du bassin de Marennes-Oléron: essais de modélisation. Thèse doct. Océanographie, Univ. Paris VI

  • Raillard O and Ménesguen A (1994) An ecosystem box model for estimating the carrying capacity of a macrotidal shellfish system. Mar Ecol Prog Ser 115: 117–130

    Google Scholar 

  • Schildt H (1995) C++, the complete reference, 2nd. Edition. Osborne

  • Sekine M, Nakanishi H, Ukita M and Murakami S (1991) A shallow-sea ecological model using an object-oriented programming language. Ecol Modelling 57: 221–236

    Article  Google Scholar 

  • Silvert W (1993) Object-oriented ecosystem modelling. Ecol Modelling 68: 91–118

    Article  Google Scholar 

  • Sinko JW and Streifer W (1967) A new model for age-size structure of a population. Ecology 48: 910–918

    Article  Google Scholar 

  • Sinko JW and Streifer W (1969). Applying models incorporating age-size structure of a population to Daphnia. Ecology 50: 608–615

    Article  Google Scholar 

  • Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7: 137–150

    Google Scholar 

  • Streifer W (1974) Realistic models in population biology. Adv Ecol Res 8: 199–266

    Article  Google Scholar 

  • Stumm W and Morgan J. (1981) Aquatic Chemistry, 2nd. Edition. Wiley-Interscience

  • Usher MB (1966) A matrix approach to the management of renewable resources, with special reference to selection forests. J Appl Ecol 3: 355–367

    Article  Google Scholar 

  • Valiela I (1995) Marine ecological processes, 2nd Edition. Springer-Verlag

  • Vicente P (1994) DifWin: A package for the definition of compartments and calculation of dispersion coefficients in box models — Application to the Carlingford Lough. In: Proceedings of the First International Conference on Hydroinformatics, Delft, The Netherlands, 717–721

  • Willows RI (1992). Optimal digestive investment: A model for filter-feeders experiencing variable diets. Limnol Oceanogr 37: 829–847

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, J., Duarte, P. & Ball, B. Trophic capacity of Carlingford Lough for oyster culture – analysis by ecological modelling. Aquatic Ecology 31, 361–378 (1997). https://doi.org/10.1023/A:1009952729216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009952729216

Navigation