Skip to main content
Log in

Modelling frost resistance of Scots pine seedlings using temperature, daylength and pH of cell effusate

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The annual course of frost resistance (LT50) and the pH of the cell effusate in needles of two-year-old Scots pine seedlings were monitored in a field experiment in Oulu, Northern Finland (65° N, 25° E) during 1995. The aim of the work was to to develop model to predict the annual variation in frost resistance by pH of the cell effusate and meteorological data. The seedlings were covered with a fibre cloth shelter which transmitted sufficient light for them to experience the photoperiod, but prevented the accumulation of snow over them. The shelter above the seedlings was removed at the beginning of May and erected again at the end of September. The seedlings were watered only for the time when the shelter was removed, and received fertilizer only during the previous summer (1994).

Frost resistance was only -5° C during the growing season but more than -100° C during the winter rest period. It was about -10° C at the end of August, increased to -55° C in the next three weeks, and reached -100° C at the beginning of October. The pH of the cell effusate was lowest during the growing season and highest in winter, the difference being about one and half pH unit. Needles exposed to -196° C showed pH from 4.0 in summer to 5.5 in winter, while pH of the non-frozen needles varied from 5.0 to 6.5, respectively. Seasonal variation in frost resistance was explained by a regression model well (R2 = 0.9) when day length, minimum air temperature and pH were entered as variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronsson, A. 1975. Influence of photo-and thermoperiod on the initial stages of frost hardening of phytotron-grown seedlings of Scots pine (Pinus silvestrisL.) and Norway spruce (Picea abies[L.] Karst.). Studia Forestalia Suecica 128: 1-21.

    Google Scholar 

  • Aronsson, A. 1980. Frost hardiness in Scots pine (Pinus sylvestrisL.) II. Hardiness during winter and spring in young trees of different mineral status. Studia Forestalia Suecica 155: 1-27.

    Google Scholar 

  • Barnes, J. D. & Davison, A. W. 1988. The influence of ozone on the winter hardiness of Norway spruce (Picea abies[L]. Karst.). New Phytol. 108: 159-166.

    Google Scholar 

  • Bigras, F. J. & D’Aoust, A. 1993. Influence of photoperiod on shoot and root frost tolerance and bud phenology of white spruce seedlings (Picea glauca). Can. J. For. Res. 23: 219-228.

    Google Scholar 

  • Burke, M. J, Gusta, L. V, Quamme, H. A, Weiser, C. J. & Li P. H. 1976. Freezing and injury in plants. Ann. Rev. Plant Phys. 27: 507-528.

    Google Scholar 

  • Cannell, M. G. R. 1990. Modelling the phenology of trees. Silva Carelica 15: 11-27.

    Google Scholar 

  • Caporn, S. J. M., Risager, M. & Lee, J. A. 1994. Effect of nitrogen supply on frost hardiness in Calluna vulgaris(L.) Hull. New Phytol. 128: 461-468.

    Google Scholar 

  • Christersson, L. 1973. The effect of inorganic nutrients on water economy and hardiness of conifers. Studia Forestalia Suecica 103: 1-26.

    Google Scholar 

  • Christersson, L. 1978. The influence of photoperiod on the development of frost hardiness in seedlings of Pinus sylvestrisand Picea abies. Physiol. Plantarum 44: 288-294.

    Google Scholar 

  • Christersson, L. & von Fircks H. 1990. Frost and winter desiccation as stress factor. Aquilo Series Bot. 29: 13-19.

    Google Scholar 

  • Dexter, S., Tottingham, W. & Graber, L. 1932. Investigations on the hardiness of plants by measurement of electrical conductivity. Plant Physiol. 7: 63-78.

    Google Scholar 

  • Dueck, T. A, Dorél, F. G, Ter Horst, T. R. & Van Der Eerden, L. M. J. 1990. Effects of ammonia, ammonium sulphate, and sulphur dioxide on the frost sensitivity of Scots pine (Pinus sylvestrisL.). Water, Air, Soil Pollut. 54: 35-49.

    Google Scholar 

  • Fuchigami, L. H., Weiser, C. J., Kobayashi, K,. Timmis, R. & Gusta, L. V. 1982. A degree growth stage ( ° GS) model and cold acclimation in temperate woody plants. Pp. 93-116. In: Li, P. H. & Sakai, A. (eds.), Plant Cold Hardiness and Freezing Stress. Mechanisms and Crop Implications, Vol. 2. Academic Press, New York.

    Google Scholar 

  • Grignon, C. & Sentenec, H. 1991. pH and ionic conditions in the apoplast. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 103-128.

    Google Scholar 

  • Hansen, J. M. 1992. Effects of nutritional factors on frost hardening in Larix leptolepis (Sieb and Zucc.) Gord. Scand. J. For. Res. 7: 183-192.

    Google Scholar 

  • Havas, P. 1971. The water economy of the bilberry (Vaccinium myrtillus) under winter conditions. Rep. Kevo Subarctic Res. Stat. 8: 41-52.

    Google Scholar 

  • Havas, P. 1985. Winter and boreal forests. Aquilo Series Bot. 23: 9-16.

    Google Scholar 

  • Hellergren, J. 1981. Frost hardiness development in Pinus sylvestrisseedlings in response to fertilization. Physiol. Plantarum 52: 297- 301.

    Google Scholar 

  • Husted, S. & Schjoerring, J. K. 1996. Ammonia flux between oilseed rape plants and the atmosphere in response to changes in leaf temperature, light intensity, and air humidity. Interactions with leaf conductance and apoplastic NH4 + and H+ concentrations. Plant Physiol. 112: 67-74.

    Google Scholar 

  • Huttunen, S., Kärenlampi, L. & Kolari, K. 1981. Changes in osmotic potential and some related physiological variables in needles of polluted Norway spruce (Picea abies). Ann. Bot. Fennici 18: 63-71.

    Google Scholar 

  • Ingestad, T. 1973. Mineral nutrient requirements of Vaccinium vitisidaeaand V. myrtillus. Physiol. Plantarum 29: 239-246.

    Google Scholar 

  • Kellomäki, S., Hänninen, H. & Kolström, M. 1995. Computations on frost damage to Scots pine under climatic warming in boreal conditions. Ecol. Appl. 5: 42-52.

    Google Scholar 

  • Larcher, W. 1995. Physiological plant ecology. 493 pp. Springer-Verlag, Berlin.

    Google Scholar 

  • Levitt, J. 1972. Responses of plants to environmental stresses. 2nd Ed. 697 pp. Academic Press, New York.

    Google Scholar 

  • Lucas, P. W., Cottam, D. A,. Sheppard, L. J. & Francis, B. J. 1988. Growth responses and delayed winter hardening in Sitka spruce following summer exposure to ozone. New Phytol. 108: 495-504.

    Google Scholar 

  • Lähdesmäki, P. & Pietiläinen, P. 1989. Seasonal variation in nitratereductase activity and concentration of NO3- NO2- and NH4 +in the buds and needles of Scots pine. Aquilo Series Bot. 26: 7–11.

    Google Scholar 

  • Margolis, H. A. & Vézina L-P. 1990. Atmospheric CO2 enrichment and development of frost hardiness in containerized black spruce seedlings. Can. J. For. Res. 20: 1392-1398.

    Google Scholar 

  • Pietilä, M., Kuusipuro, P., Pietiläinen, P. & Lähdesmäki, P. 1989. Specificity and seasonal variation of arginase, glutamate synthase and nitrate reductase activities in Scots pine needles. Plant Sci. 64: 153-160.

    Google Scholar 

  • Pietiläinen, P., Poikolainen, J. & Lähdesmäki, P. 1991. Long-term monitoring of nitrate reductase activity in the needles of Pinus sylvestrisin the context to the environmental temperature and ground frost as an indicator of nitrogen balance in N Finland. Ann. Bot. Fennici 28: 131-134.

    Google Scholar 

  • Pomeroy, M. K., Siminovitch, D. & Wightman, F. 1970. Seasonal biochemical changes in the living bark and needles of red pine (Pinus resinosa) in relation to adaptation to freezing. Can. J. Bot. 48: 953-967.

    Google Scholar 

  • Raven, J. A. & Smith, F. A. 1976. Nitrogen assimilation and transport in vascular plants in relation to intracellular pH regulation. New Phytol. 76: 415-431.

    Google Scholar 

  • Raven JA. 1986. Biochemical disposal of excess H+ in growing plants? New Phytol. 104: 175-206.

    Google Scholar 

  • Repo, T., Mäkelä, A. & Hänninen, H.. 1990. Modelling frost resistance of trees. Silva Carelica 15: 61-74.

    Google Scholar 

  • Sakai, A. 1979. Freezing avoidance mechanism of primordial shoots of conifer buds. Plant Cell Physiol. 20: 1381-1390.

    Google Scholar 

  • Sakai, A. 1983. Comparative study on freezing resistance of conifers with special reference to cold adaptation and its evolutive aspects. Can. J. Bot. 61: 2323-2332

    Google Scholar 

  • Sakai, A. & Larcher, W. 1987. Frost Survival of Plants. Responses and Adaptation to Freezing Stress. 321 pp. In: Billings, W. D, Golley, F., Lange, O. L., Olson, J. S. & Remmert, H. (eds), Ecol. Studies, Vol. 62. Springer-Verlag, Berlin.

    Google Scholar 

  • Sarjala, T. & Kaunisto, S. 1993. Needle polyamine concentrations and potassium nutrition in Scots pine. Tree Physiol. 13: 87-96.

    Google Scholar 

  • Sarjala, T. & Savonen, E-M. 1994. Seasonal fluctuations in free polyamines in Scots pine needles. J. Plant Physiol. 144: 720- 725.

    Google Scholar 

  • Sarjala, T., Taulavuori, K., Savonen, E.-M. & Edfast, A.-B. 1997. Does availability of potassium affect cold hardening of Scots pine through polyamine metabolism? Physiol. Plantarum 99: 56-62.

    Google Scholar 

  • Sheppard, L. J. 1994. Causal mechanisms by which sulphate, nitrate and acidity influence frost hardiness in red spruce: review and hypothesis. New Phytol. 127: 69-82.

    Google Scholar 

  • Sutinen, M.-L., Palta, J. P. & Reich, P. B. 1992. Physiological changes in the needles of Pinus nigraand Pinus resinosawith seasonal changes in freezing stress resistance: evaluation of the electrolyte leakage method. Tree Physiol. 11: 241-254.

    Google Scholar 

  • Smith, F. A. & Raven, J. A. 1979. Intracellular pH and its regulation. Annu Rev. Plant Physiol. 30: 289-311.

    Google Scholar 

  • Taulavuori, K., Taulavuori, E., Niinimaa, A. & Laine, K. 1996a. Frost resistance and pH of cell effusate in needles of artificially deacclimated Scots pine (Pinus sylvestris). Physiol. Plantarum 96: 111-117.

    Google Scholar 

  • Taulavuori, K., Rankka, N., Laine, K., Pakonen, T. & Karhu, M. 1996b. A rate-controlled freezer for frost manipulations on plant organs: a system description. Aquilo Series Bot. 36: 49-52.

    Google Scholar 

  • Thompson, B. 1983. Why fall fertilize? Pp. 85-91. In: Sawyer,. R. A., (ed.) Conference proceedings of the Western Forestry Nursery Council. 10-12 Aug. 1982. Medford, OR. Southern Oregon State College, Ashland.

    Google Scholar 

  • Waite, C. E., De Hayes, D. H., Rebbeck, J., Schier, G. A. & Johnson, A. H. 1994. The influence of elevated ozone on freezing tolerance of Red spruce seedlings. New Phytol. 126: 327-335.

    Google Scholar 

  • Wilner, J. 1960. Relative and absolute electrolyte conductance tests for frost hardiness of apple varieties. Can. J. Plant Sci. 40: 630- 637.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taulavuori, K., Niinimaa, A., Laine, K. et al. Modelling frost resistance of Scots pine seedlings using temperature, daylength and pH of cell effusate. Plant Ecology 133, 181–189 (1997). https://doi.org/10.1023/A:1009781203879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009781203879

Navigation