Skip to main content
Log in

Satellite remote sensing for ecological analysis of forested landscape

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The spatial characterisation and vertical analysis are together considered important to evaluate structure of forested landscapes. In recent years, increased human impacts have resulted in changes in landscape and structure of the forest ecosystem. The present study is aimed to analyse impacts of disturbance on landscape structure using satellite remote sensing and a geographic information system (GIS) in Madhav National Park of India. The Landsat TM data have been used to identify vegetation types. The patch characteristics of the vegetation like size, shape, porosity and patch density have been studied. The physical and humanmade features have divided the national park in three zones. These zones are also utilised as management zones by the State Forest Department. The study indicates that the central zone is distinctly different from the south and north zones. The patch size and porosity have been found to be most important parameters to discriminate differences in the ecological status of three different zones of the park. The patchiness and shape provide supportive information and characterise the patches of the zones. The structural analysis of the vegetation revealed effect on species diversity and biomass distribution in the different disturbance regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beals, E. W. 1985. Bray-curtis ordination: An effective strategy for analysis of multivariate ecological data. Adv. Ecol. 14: 1-55.

    Google Scholar 

  • Blair, R. M. & Brunett, L. E. 1976. Phytosociological changes after timber harvest in the southern in a southern pine ecosystem. Ecology 57: 18-32.

    Google Scholar 

  • Cain, S. 1938. The species area curve. Am. Midl. Nat. 19: 573-581.

    Google Scholar 

  • Champion, H. G. & Seth, S. K. 1968. Revised classification of forest types of India. Manager Publication, Government of India, Delhi Cole, G. A. 1983. Textbook of Limnology, 3rd ed. Mosby, St. Louis.

    Google Scholar 

  • Curtis, J. T. & McIntosh, R. P. 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31: 434-455.

    Google Scholar 

  • Domoghue Daniel N. M. & Shenan, I. 1987. A preliminary assess-ment of Landsat TM imagery for mapping vegetation and sedi-ment distribution in Wash Estury. Int. J. Remote Sensing 8(7): 1101-1008.

    Google Scholar 

  • Forman, T. T. R. & Godron, M. 1986. Landscape Ecology. John Wiley and Sons Publications, New York.

    Google Scholar 

  • Grame, M. 1980. Best shape for nature reserves. Nature 286: 630-632.

    PubMed  Google Scholar 

  • Gordon, B. Bonnan 1991. Seasonal and annual carbon fluxes in a boreal forest landscape. J. Geophys. Res. 96(D9): 17 329-17 338.

    Google Scholar 

  • Hack, B., Bryant, N. & Stevans, A. 1987. An assessment of Landsat MSS and TM data for urban landcooover digital classification. Remote Sensing Environ. 21: 201-213.

    Google Scholar 

  • Hall, R. J., Dams R. V. & Lyseng, L. N. 1991. Forest cut cover map-ping from SPOT satellite data. Int. J. Remote Sensing 12(11): 2193-2204.

    Google Scholar 

  • Hendrix, W. G., Fabos, J. Gy. & Price, J. E. 1988. An ecological approach to landscape planning using Geographic Infromation Technology. Landscape Urban Planning 15: 211-225.

    Google Scholar 

  • Horn, H. S. 1968. The adaptive significance of colonial nesting in the Brewers Blacckbird (Euphogus Cyanocephalus). Ecology 49: 682-694.

    Google Scholar 

  • Kershaw, K. A. 1975. Quantitative and Dynamic Plant Ecology. Elsevier, New York.

    Google Scholar 

  • Lovejoy, S. 1982. Area perimeter, relation for rain and could areas. Science 16: 185-187.

    Google Scholar 

  • Lynch, J. F. & Whigham, D. F. 1984. Effects of forest fragmentation on breeding bird communities in Maryland, USA. Biol. Conserv. 28: 287-324.

    Google Scholar 

  • Marcot, B. G. & Meretsky, V. J. 1983. Shaping stands to enhance habitat diversity. J. For. 81: 527-528.

    Google Scholar 

  • Margalef, F. R. 1958. Information theory in ecology. Gen. Syst. 3: 36-71.

    Google Scholar 

  • Oliver, C. D. & Larson, B. C. 1990. Forest Stand Dynamics. Biolo-gical Resource Management Series. McGraw Hill, Inc.

  • Phillips, E. A. 1959. Methods of Vegetation Study. Henri Holt Co., Inc.

  • Pielou, E. C. 1966. The measurement of diversity in different types of biological collections.J. Theor. Biol. 13: 131-144.

    Google Scholar 

  • Prasad, S. N., Goyal, S. P., Roy, P. S. & Singh, S. 1994. Changes in wild ass (Equushemionus Khur) habitat conditions in Little Rann of Kutch, Gujrat from a remote sensing perspective. Int. J. Remote Sensing 15(16): 3155-3164.

    Google Scholar 

  • Rodgers, W. A. & Panwar, S. H. 1988. Biogeographical classification of India. New Forest, Dehradun. 341 pp.

    Google Scholar 

  • Roy, P. S., Saxena, K. G. & Pant, D. N. 1986. Analysis of vegetation types using satellite remote sensing techniques for wildlife hab-itat evaluation in Kanha National Park. Proc. of seminar-cum-workshop on wildlife habitat evaluation using remote sensing techniques. Eds. Kamat, D. S. & Panwar, H. S.

  • Roy, P. S., Ravan, S. A., Singh, I. J. & Singh S. 1993. Approach for terrestrial biomass estimation using satellite remote sensing. I. Monoculture plantation in Tarai region of Uttar Pradesh. Global Change Studies, Scientific report, ISRO-GPB-SR-42-92.

  • Shannon, C. E. & Weaver, W. 1963. The mathematical theory of communication. University of Illinois Press, Urbana.

    Google Scholar 

  • Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688.

    Google Scholar 

  • Slatkin, M. 1974. Competition and regional coexixtance. Ecology 55: 128-134.

    Google Scholar 

  • Singh, K. P. 1968. Litter production and nutrient turnover in decidu-ous forest of Varanasi. Proc. Symp Recent Adv. Tropical Eco-logy. Eds. Misra, R. & Gopal, B.

  • Singh, K. P. & Misra, R. 1979. Structure and functioning of nat-ural modified, and silvicultural ecosystems of Eastern Uttar Pradesh. Final Technical Report (1975-1978). MAB research project Banaras Hindu University. 73 p.

  • Troll, C. 1971. Landscape Ecology (Geoecology) and Bio-ceonology-a terminology study. Geoforum 8: 43-46.

    Google Scholar 

  • Vistousek, P. 1984. Litterfall, nutrient cycling and nutrient limita-tions in tropical forest. Ecology 65: 285-298.

    Google Scholar 

  • Weins, J. A., Stenseth, N. C., Van Horne, B. & Ims, R. A. 1993.Ecological mechanisms and landscape ecology. Oikos 66: 369-380.

    Google Scholar 

  • Whittaker, R. H. 1965. Branch dimensions and estimation of branch production. Ecology 46: 365-370.

    Google Scholar 

  • William, D. L. & Nelson, R. F. 1986. Use of remotely sensed data for assessing forest stand conditions in eastern United States. IEEE Trans. Geosci. Remote Sensing E-24: 130-138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravan, S.A., Roy, P. Satellite remote sensing for ecological analysis of forested landscape. Plant Ecology 131, 129–141 (1997). https://doi.org/10.1023/A:1009731608350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009731608350

Navigation